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1. Introduction 

In the past decade, dynamic constrained multiobjective optimization has attracted the increasing research interest 

[1][2]. To the best of our knowledge, the problem is widely-spread in real-world applications, such as scheduling 

optimization, and resource allocation, which involves time-varying multiobjective and constraints [3]-[5]. More 

especially, the corresponding dynamic constrained multiobjective optimization problems (DCMOPs) contain more 

complex characteristics and special difficulties than dynamic multiobjective optimization or constrained 

multiobjective optimization ones [6]-[9]. To solve this kind of problem, traditional multiobjective evolutionary 

algorithms mainly face three difficulties. First, environmental changes can be described as various dynamics, forming 

different levels of difficulties to algorithms. Thus, there is no change response strategy that can deal with all kinds of 

dynamics. Second, different types of constraints may appear under dynamic environments, which pose a challenge to 

achieve good versatility in handling various constraints for any static optimizer. Finally, the response time for 

environmental changes is generally tight for algorithms. Concerning the above-mentioned analysis, there is a 

significant need for new mechanisms in solving DCMOPs. More especially, a set of diverse and unbiased test problems 

is a great demand to systematically study dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) 

in the field [10][11]. 

In the competition, 10 benchmark functions are developed, covering diverse characteristics which exactly represent 

different real-world scenarios, for example, continuity-disconnection, time-dependent PF/PS geometries, dynamic 

infeasible region, small feasible region, and so on. Based on the test suite with various characteristics, researchers can 

better understand the strengths and weaknesses of DCMOEAs, stimulating the research on dynamic constrained 

multiobjective optimization [12][13]. All the benchmark functions have been implemented in MATLAB code based 

on the codes provided by [14], which can be downloaded in the following website. 

https://github.com/gychen94/DCMO 
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2. Summary of 10 test problems 

The proposed test suite (called DCF in this competition) has 10 bi-objective problems. The main dynamic 

characteristics of each problem are briefly summarized in Table 1. 

3. Problem definitions 

The following definitions are widely used in each problem definition: 

⚫ m : the number of objectives 

⚫ n : the number of decision variables 

⚫ N : population size 

⚫ ix : the i-th decision variable 

⚫ jf : the j-th objective function 

⚫ kc : the k-th function of constraint 

Table 1: Main characteristics of the 10 test problems 

Problems Objectives Types Remarks 

DCF1 2 
Static objectives and 

dynamic constraint 

Dynamic constraints lead to that the true PF changes from the 

unconstrained PF to the partial boundary of feasible region. 

DCF2 2 
Dynamic objectives 

and static constraint 

Under disconnected feasible regions, the switch of the position-

related variable can significantly cause severe diversity loss to 

population. 

DCF3 2 
Dynamic objectives 

and constraint 

Dynamic constraint can sometimes arise the convergence 

pressure of population, and sometimes shows no effect. 

DCF4 2 
Static objectives and 

dynamic constraint 

In small feasible region, dynamic constraint changes the true PF 

from unconstrained PF to the boundary of feasible region. 

DCF5 2 
Dynamic objectives 

and static constraints 

The mixed convexity-concavity of PF is affected by the 

boundary of feasible region under the small feasible region. 

DCF6 2 
Dynamic objectives 

and constraint 

In small feasible region, the range and preference of disconnect 

PF change over time. 

DCF7 2 
Dynamic objectives 

and static constraint 

PF shifts in the objective space over time, and changes from 

disconnect to continuity. 

DCF8 2 
Dynamic objectives 

and constraints 

True PF is the boundary of feasible region, and oscillates over 

time. 

DCF9 2 
Dynamic objectives 

and constraints 

The infeasible regions rotate along (1.1, 1.1) over time, 

changing from convergence pressure to distribution pressure. 

DCF10 2 
Dynamic objectives 

and constraint 

Dynamic constraint makes the true PF that changes from 

several segments to continuous one of the unconstrained PF. 
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⚫  : generation counter 

⚫ t : frequency of change 

⚫ tn : severity of change 

⚫ 1 t tt n  =     : time index 
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Fig. 1 Illustration of the true PF of DCF1. 

Remark: DCF1 has the static objective functions and a dynamic constraint, forming the true PF changing from the 

unconstrained PF to the partial boundary of feasible region. This problem is used to assess the ability of algorithms in 

increasing diversity. 
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where sin(0.5 )G t= , 1 ( 1)r n G= + −   , and the search space is [0,1]nx . 

Remark: DCF2 has dynamic objective functions and a static constraint. Under disconnected feasible regions, the 

switch of the position-related variable can significantly cause severe diversity loss to population. Therefore, it is a 

significant challenge in maintaining or increasing diversity for solving this problem. 

 

Fig. 2 Illustration of the true PF of DCF2. 

3.3 DCF3 
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Fig. 3 Illustration of the true PF of DCF3. 
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Remark: DCF3 has simple dynamics on objective functions and constraint. Regarding the constraint, it sometimes 

arises the convergence pressure of population, and sometimes shows hardly no effect. 

3.4 DCF4 
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Fig. 4 Illustration of the true PF of DCF4. 

Remark: DCF4 shows dynamics on the small feasible region. The true PF changes from unconstrained PF to the 

boundary of feasible region, and the smaller feasible region makes it difficult to track. 

3.5 DCF5 
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Remark: DCF5 has the mixed and small feasible region, and the unconstrained PF geometry changes from concavity 

to convexity, or vice versa. To be more specific, the true PF is sometimes affected by the boundary of feasible region. 

 

Fig. 5 Illustration of the true PF of DCF5. 
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Fig. 6 Illustration of the true PF of DCF6. 
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Remark: DCF6 has both of dynamic objective functions and constraint, and the constraint changes the objective 

preference of PF over time. Therefore, problem is used to see what performance of algorithms once they are confronted 

with the dynamic range and bias of disconnect PF. 

3.7 DCF7 
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Fig. 7 Illustration of the true PF of DCF7. 

Remark: The constraint in DCF7 is always static, and unconstrained PF moves in objective space over time. More 

especially, the true PF changes from disconnect to continuity over time. 

3.8 DCF8 
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where sin(0.5 )G t= , 10W G=    , and the search space is 1[0,1] [-1,1]nx −  . 

Remark: The true PF of DCF8 is always the boundary of feasible region, and oscillates over time. In addition, the 
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convergence pressure is time-varying caused by dynamic constraints. 

 

Fig. 8 Illustration of the true PF of DCF8. 

3.9 DCF9 

 

Fig. 9 Illustration of the true PF of DCF9. 
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with 
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where sin(0.5 )G t= , 0.5W t= , and the search space is 1[0,1] [-1,1]nx −  . 

Remark: The objective functions of DCF9 are rather simple, and the infeasible regions rotate along (1.1, 1.1) over 

time, changing the pressure in managing convergence to distribution. 

3.10 DCF10 
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Fig. 10 Illustration of the true PF of DCF10. 

Remark: The objective functions and constraints of DCF10 varies over time, and dynamic constraint makes the true 

PF that changes from several segments to continuous one of the unconstrained PF. This problem is used to assess the 

solving ability of diversity or convergence 

4. Performance assessments 

The following experimental settings are encouraged to use when conducting empirical studies on the proposed test 

suite. 
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4.1 General settings 

⚫ Population size: 100. 

⚫ Number of variables: 10. 

⚫ Frequency of change ( t ): 10 (fast changing environments), 30 (slow changing environments). 

⚫ Severity of change ( tn ): 5 (severe changing environments), 10 (moderate changing environments). 

⚫ Number of changes: 60. 

⚫ Stopping criterion: a maximum number of 100(60 60)t +  fitness evaluations, where 6000 fitness evaluations 

are given before the first environmental change occurs. 

⚫ Number of independent runs: 20. 

4.2 Performance metric 

1) MIGD: 

MIGD is the modified IGD [15], which can comprehensively reflect the diversity and convergence of Pareto-

optimal solutions obtained under the total environments. Assuming that a set of uniformly distributed samples of true 

PF(t) are denoted as R(t), the MIGD value is calculated as follows. 
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where T is the number of environments that occurred in a run. dis(P(t), ri) denotes the minimum Euclidean distance 

in the objective space between ith point in R(t) and the P(t) obtained by an algorithm. Here, a set of around 1000 points 

uniformly sampled from the true PF(t) is expected to use for the calculation of MIGD. 

2) MHV: 

The MHV is a modification of the HV [16] that computes the hypervolume of the area dominated by the obtained 

P(t): 
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where voli denotes the volume of a hypercube formed by reference point zref and ith solution in P(t). Before the 

calculation, all the objective values of P(t) are normalized by the nadir point and ideal point of the true PF(t), and the 

reference point zref is set to (1.1, …, 1.1). 
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4.3 Results Format 

To submit the result, it is expected to format the submitted competition results in tables as the same as Table 2. More 

especially, please do make sure that the submitted results are of high readability, and multiple types of results shown 

in Table are clearly recorded, including the mean and standard deviation of the MIGD/MHV values for each test 

instance. 

For all participants, please also submit the corresponding source code which should allow the generation of 

reproducible results you're submitted. Besides, it would be nice if you can submit a document that gives a brief 

illustration to the algorithm and corresponding parameter settings. 
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