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Innovative Artificial Intelligence (IAI), DMU

• IAI (https://www.dmu.ac.uk/research/centres-institutes/iai):
➢ Mission: Developing fundamental theoretical and practical solutions to 

real-world problems using a variety of AI paradigms

➢ Members: 20+ staff, research fellows, ~30 PhDs, visiting researchers

➢ Themes: EC, fuzzy logic, neural networks, data mining, computer vision, 

game, health, bio-informatics, …

• Funding:
➢ Research Councils/Charities: EPSRC, ESRC, EU FP7 & Horizon 2020, 

Royal Society, Royal Academy of Eng., Innovate UK, KTP, Nuffield Trust …

➢ Government: Leicester City Council, DTI

➢ Industries: Lachesis, EMDA, RSSB, Network Rail, etc.

• Collaborations:
➢ Universities: UK, USA, Spain, and China

➢ Industries and local governments

• Teaching/Training:
➢ DTP-IS: University Doctor Training Programme in Intelligent Systems

➢ MSc: Intelligent Systems (& Robotics); Data Analytics; BI & Data Mining

➢ BSc: AI with Robotics; Computer Game Programming; Math; Comp Sci
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Outline of the Tutorial

• Part I: Fundamentals

➢ Evolutionary computation (EC) for dynamic optimization problems 

(DOPs): Concept and motivation

➢ Benchmark and test problems

➢ Performance measures

➢ EC approaches for DOPs

• Part II: Case Studies, Issues and Future Work

➢ Case study: Particle swarm optimization (PSO) for continuous 

DOPs

➢ Case study: Ant Colony Optimization (ACO) for combinatorial 

DOPs

➢ Advanced topics and challenges

➢ EDOLAB: introduction

• Summary
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What is Evolutionary Computation (EC)?

• EC encapsulates a class of stochastic optimisation 

algorithms, dubbed Evolutionary Algorithms (EAs) 

• An EA is an optimisation algorithm that is

➢ Generic: a black-box tool for many problems

➢ Population-based: evolves a population of candidate solutions

➢ Stochastic: uses probabilistic rules

➢ Bio-inspired: uses principles from biological evolution

4



Design and Framework of EAs

• Given a problem to solve, key things to consider:

➢ Representation of solution into individual

➢ Evaluation or fitness function
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• EA Framework

➢ Initialization of population

➢ Evolve the population

• Selection of parents

• Variation operators 

(recombination, mutation)

• Selection of offspring into 

next generation

➢ Termination condition: a 

given number of generations



EC for Solving Optimization Problems

• Easy to use: No strict requirements to problems

• Widely used in different fields:

➢ Search-based software engineering

➢ Financial and economical systems

➢ Transportation and logistics systems

➢ Automatic programming, art and music design

➢ ……

• Successfully used for different types of problems

➢ Stationary vs dynamic optimization problems

➢ Single objective vs multi-objective optimization problems

➢ Single modal vs multi-modal optimization problems

➢ Small scale vs large scale optimization problems

➢ Single level vs multi-level optimization problems

➢ ……
6



EC for Dynamic Optimisation Problems: Motivation

• Traditionally, EAs are mainly applied for static problems

➢ Aim: find optimum quickly and precisely in the search space
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• But, many real-world problems are dynamic optimisation 

problems (DOPs), where changes occur over time
➢ Transport systems: travel time between nodes may change

➢ Logistics: customer demands may change



What Are DOPs？

• In general terms, “optimisation problems that change over 
time” are called dynamic problems or time-dependent 
problems:

 F = f(X, S, t)
 

    where X: decision variable(s); S: parameters; t: time

• DOPs: a special class of dynamic problems that are solved 
online by an algorithm as time goes by
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Why DOPs Challenging EC?
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• For DOPs, optima may move over time in search space
➢ We need to track the moving optima over time

• DOPs challenge traditional EAs
➢ Once converged, hard to escape from the old optimum



Why EC for DOPs?

• Many real-life problems are DOPs

➢ Desirable to present solutions to decision makers over time

• EAs, once properly enhanced, are good choice

➢ Inspired by biological behaviour, always in dynamic environments

➢ Intrinsically, should be fine to deal with DOPs

• Research on EC for DOPs rises recently

➢ Books, PhD Theses

➢ Journal special issues

➢ Workshops and conference special sessions

➢ IEEE Symposium on CIDUE (2011, 2013-2022)

➢ IEEE Competitions: within 2009 & 2012 IEEE CEC
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Benchmark and Test DOPs

• Basic idea: change base static problem to create DOPs

• Real space:

➢ Switch between different functions

➢ Move/reshape peaks in the fitness landscape

• Binary space:

➢ Switch between ≥ 2 states of a problem: knapsack

➢ Use binary masks: XOR DOP generator (Yang & Yao’05)

• Combinatorial space:
➢ Change decision variables: item weights/profits in knapsack 

problems

➢ Add/delete decision variables: new jobs in scheduling, nodes 

added/deleted in network routing problems
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Moving Peaks Benchmark (MPB) Problem

• Proposed by Branke (1999)

• The MPB problem in the D-dimensional space:

F Ԧ𝑥, 𝑡 = max
𝑖=1, … ,𝑃

𝐻𝑖 𝑡

1 + 𝑊𝑖 𝑡 σ
𝑗=1
𝑗=𝐷

(𝑥𝑗 𝑡 − 𝑋𝑖𝑗 𝑡 )2

➢ 𝐻𝑖(t), 𝑊𝑖 𝑡 , 𝑋𝑖 𝑡 = {𝑋𝑖1 … 𝑋𝑖𝐷}: height, width, location of peak i at t

• The dynamics: 

𝐻𝑖 𝑡 = 𝐻𝑖 𝑡 − 1 + ℎ𝑒𝑖𝑔ℎ𝑡_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗ 𝜎

𝑊𝑖 𝑡 = 𝑊𝑖 𝑡 − 1 + 𝑤𝑖𝑑𝑡ℎ_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗ 𝜎

𝑉𝑖 𝑡 =
𝑠

Ԧ𝑟 + 𝑉𝑖 𝑡 − 1
( 1 − 𝜆 Ԧ𝑟 + λ𝑉𝑖 𝑡 − 1 )

Ԧ𝑋𝑖 𝑡 = Ԧ𝑋𝑖 𝑡 − 1 + 𝑉𝑖 𝑡

➢ 𝜎~𝑁 0,1 ;  𝜆: correlated parameter

➢ 𝑉𝑖(t): shift vector, which combines random vector Ԧ𝑟 and 𝑉𝑖(t-1) and 

is normalized to the shift length s
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Dynamic Traveling Salesman Problem 

• Stationary traveling salesman problem (TSP):

➢ Given a set of cities, find the shortest route that visits each city 

once and only once 

• Dynamic TSP (DTSP):

➢ May involve dynamic cost (distance) matrix 

  D(t) = {dij(t)}n∗n

       dij(t): cost from city i to j; n: the number of cities

➢ The aim: to find a minimum-cost route containing all cities at time t

➢ DTSP can be defined as f (x, t):
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The XOR DOP Generator
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S. Yang and X. Yao. Experimental study on population-based incremental learning algorithms for dynamic 

optimization problems. Soft Computing, 9(11): 815-834, November 2005.



Constructing Cyclic Dynamic Environments

• Extend XOR DOP generator to create cyclic environments
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S. Yang and X. Yao. Population-based incremental learning with associative memory for dynamic environments. 

IEEE Transactions on Evolutionary Computation, 12(5): 542-561, October 2008.



Performance Measures

• For EC for static problems, 2 key performance measures:

➢ Convergence speed, Success rate of reaching optimality

• For EC for DOPs, over 20 measures (Nguyen et al., 2012)

➢ Optimality-based performance measures
• Collective mean fitness or mean best-of-generation

• Accuracy

• Adaptation

• Offline error and offline performance

• ......

➢ Behaviour-based performance measures

• Reactivity

• Stability

• Robustness

• Diversity measures 

• ......
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T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey of the state of the art. 

Swarm and Evolutionary Computation, 6: 1-24, October 2012



EC for DOPs: Things to Do

• To detect potential environmental changes

➢ Individual-level detection: Re-evaluate individuals’ objective values 

every generation

➢ Population-level detection: Check population-related statistical 

information (i.e., distribution) every generation; Significant change 

means environment change

➢ Both methods could fail to detect changes (not 100% guaranteed)

• To track the changing optima

➢ To expect a steady and fast change response

➢ To reduce the cost of tracking (given the budget limit, i.e., time, 

memory)

17



Response/Enhancing: First Thinking

• Recap: traditional EAs are not good for DOPs

• Goal: to track the changing optimum

• How about restarting an EA after a change?

➢ Natural and easy choice

➢ But, not good choice because:

• It may be inefficient, wasting computational resources

• It may lead to very different solutions before and after a change. 

For real-world problems, we may expect solutions to remain similar

• Extra approaches are needed to enhance EAs for DOPs

18



Response/Enhancing: General Approaches

• Many approaches developed to enhance EAs for DOPs

• Typical approaches:

➢ Diversity: handle convergence directly

➢ Memory: store and reuse useful information

➢ Multi-population: co-operate sub-populations

➢ Adaptive: adapt generators and parameters

➢ Prediction: predict changes and take actions in advance

➢ Hybridization: use hybridization tech to improve EAs for DOPs
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•  D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao. A survey of evolutionary continuous dynamic 

optimization over two decades—Part A. IEEE Trans. on Evol. Comput., 25(4): 609-629, 2021.

•  D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao. A survey of evolutionary continuous dynamic 

optimization over two decades—Part B. IEEE Trans. on Evol. Comput., 25(4): 630-650, 2021.

•  M. Mavrovouniotis, C. Li, and S. Yang. A survey of swarm intelligence for dynamic optimization: Algorithms 

and applications. Swarm and Evolutionary Computation, 33: 1-17, April 2017

•  T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey of the state of the art. 

Swarm and Evolutionary Computation, 6: 1-24, October 2012



Diversity Approaches

• Diversity increase: introduce diversity after a change

➢ Partially random restart, hyper-mutation, variable local search

20
mutate/recombine

select

increase 

diversity

Change

detected?

YES

NO



Diversity Approaches

• Diversity maintenance: maintain diversity throughout the 

run (even if no change occurs)
➢ Random immigrants
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mutate/recombine

select maintain diversity



Memory Approaches

• Cyclic DOPs: change cyclically among a fixed set of states
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• For cyclic DOPs, use memory to store & reuse good solutions 

➢ With time, store the best solution of population into memory 

➢ When a change occurs, memory helps to track new optimum



Direct Memory vs Associative Memory

• Direct memory: store good solutions (Branke, CEC’99)

• Associative memory: store environmental information + 

good solutions
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S. Yang and X. Yao. Population-based incremental learning with associative memory for dynamic environments. 

IEEE Transactions on Evolutionary Computation, 12(5): 542-561, October 2008



Multi-population Approaches

• Idea: Use several cooperative populations
➢ Populations evolve independently in different areas of search space
➢ Populations exclude each other to avoid overlap
➢ When optimum moves, nearby population will take action
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Prediction Approaches

• For some DOPs, changes exhibit predictable patterns

• Often to predict: 

➢ The location of new optima after 

     a change

➢ When the next change may occur

➢ Which environment may appear

• Techniques:
➢ Kalman filter (Muruganantham et al. 2016)

➢ Population prediction strategy (Zhou et al. 2014)

➢ Feed-forward prediction (Hatzakis & Wallace 2006)

➢ Directed search strategy (Wu et al. 2015) 

➢ Evolutionary gradient search (Koo et al. 2010)
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Adaptive Approaches

• Aim: Adapt operators/parameters, usually after a change

➢ Hypermutation (Cobb & Grefenstette’93): raise the mutation rate 

temporarily

➢ Hyper-selection (Yang & Tinos’08): raise the selection pressure 

temporarily

➢ Hyper-learning (Yang & Richter’09): raise the learning rate for 

Population-Based Incremental Learning (PBIL) temporarily
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• H.G. Cobb, J.J. Grefenstette (1993). Genetic algorithms for tracking changing environments. Proc. ICGA, 

523-530.

• S. Yang, R. Tinos (2008). Hyper-selection in dynamic environments. CEC’08, pp. 3185–3192.

• S. Yang, H. Richter (2009). Hyper-learning for population-based incremental learning in dynamic 

environments. CEC’09, pp. 682–689.



Hybridization Approaches

• Idea: Using hybridization tech to improve the performance 

of EC for DOPs

• Hybridize EC with local search + diversity schemes, e.g.:

➢ P-ACO: Hybridize ACO with local search and random immigrants

➢ Multi-strategy ensemble PSO (MEPSO): Hybridize PSO with 

Gaussian local search + differential mutation

• Hybridize EC with other meta-heuristic methods

➢ PSO + Cellular Aotomata

➢ PSO + Fuzzy C-means
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• M. Mavrovouniotis, S. Yang, A memetic ant colony optimization algorithm for the dynamic travelling 

salesman problem, Soft Comput. 15 (7) (2011) 1405–1425

• W. Du, B. Li, Multi-strategy ensemble particle swarm optimization for dynamic optimization, Inf. Sci. 178 

(15) (2008) 3096–3109

• A. Hashemi, M. Meybodi, A multi-role cellular PSO for dynamic environments, in: 14th International 

Computer Conference (CSICC 2009), 2009, pp. 412–417

• M. Kamosi, A. Hashemi, M. Meybodi, A hibernating multi-swarm optimization algorithm for dynamic 

environments, in: 2010 2nd World Congress on Nature and Biologically Inspired Computing, 2010, 363–369



Remarks on Enhancing Approaches

• No clear winner among the approaches

• Memory is efficient for cyclic environments

• Multi-population is good for multimodal problems

➢ Able to maintain diversity

➢ The search ability will decrease if too many sub-populations

• Diversity schemes are usually useful

➢ Guided immigrants may be more efficient

• Thumb of rule: balancing exploration & exploitation over 

time

28



Case Study: PSO for Continuous DOPs

• Particle Swarm Optimization (PSO): Developed by 

Kennedy and Eberhart (1995)

• A population-based optimization technique inspired by 

social behaviour of bird flocking or fish schooling

• Swarm members can profit from their own discovery and 

previous experience of all other members of the school

29

Kennedy, J. and Eberhart, R.: Particle Swarm Optimization. Proceedings of the Fourth IEEE International 

Conference on Neural Networks, Perth, Australia. IEEE Service Center 1942-1948, 1995.



Particle Swarm Optimization (PSO)

• PSO consists of a swarm of particles

• Each particle resides at a position in the search space and 

flies over the search space with a certain velocity

• The velocity of each particle is influenced by 

➢ Momentum: maintaining previous velocity  it has travelled so far

➢ Cognitive component: returning to the best position visited so far

➢ Social component: moving to the best position found by neighbors 

so far
 

           Ԧ𝑥𝑖 ← Ԧ𝑥𝑖 + Ԧ𝑣𝑖
 

• Eventually the swarm will converge to optimal positions
30

Social 
component

Cognitive 
component

Momentum

Ԧ𝑣𝑖 ← Ԧ𝑣𝑖 + 𝑈 0, 𝜑1  Ԧ𝑝𝑖 − Ԧ𝑥𝑖  + 𝑈 0, 𝜑2  Ԧ𝑔𝑖 − Ԧ𝑥𝑖
 



PSO for Continuous DOPs: Issues

• PSO has been applied for many static problems 

• Recently, PSO has been applied for continuous DOPs 

• Two aspects to consider: 

➢ Outdated memory. Two solutions: 

• Simply set pbest to the current position 

• Reevaluate pbest and reset it to current position if it is worse than 

the current position 

➢ Diversity loss. Three solutions: 

• Introduce diversity after a change 

• Maintain diversity during the run 

• Use multi-swarms
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Case Study: Multi-swarm PSO for Continuous DOPs

• Recently, a framework of multi-population approaches

➢ Use single linkage hierarchical clustering to create populations

➢ Each population will search one peak in the fitness landscape

➢ An overcrowding scheme to remove unnecessary populations

➢ A special rule to decide proper moments to increase diversity 

without change detection

➢ An adaptive method to create a proper number of populations 

needed

32

• C. Li and S. Yang. A general framework of multi-population methods with clustering in undetectable dynamic 

environments. IEEE Transactions on Evolutionary Computation, 16(4): 556-577, August 2012

• C. Li, S. Yang, and M. Yang. An adaptive multi-swarm optimizer for dynamic optimization problems. 

Evolutionary Computation, 22(4): 559-594, Winter 2014

• C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang. An adaptive multi-population framework for 

locating and tracking multiple optima. IEEE Transactions on Evolutionary Computation, 20(4):590-605, 2016



Multi-swarm PSO for DOPs: Demo
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Case Study: ACO for Train Platform Reallocation

34

Image source: https://en.wikipedia.org/wiki/Leicester_railway_station

• A train that arrives late at a station will 
miss its scheduled time slot and may 
have to be reallocated to a new platform

• Multiple trains may be delayed in suc- 
cession, each new delay changes the 
problem

• Dynamic Railway Platform Reallocation 
Problem (DRPRP) reallocates multiple 
successive delayed trains to new 
timeslots on railway platforms to mini-
mise the ongoing delay in the system • We considered Leicester station

• A busy UK railway station with 4 

bi-directional platforms and trains 

arriving from 4 different directions

• We consider the effect of the 

reallocation decisions not only at 

the station but also on the 

remainder of these trains’ journey

Leicester Station Track Layout



Modelling the Problem
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• The model was created from Network 

Rail’s train schedule data from Integrated 

Train Planning System (ITPS)

• From this we extract details of the 

movement of trains through the station 

and the movement of all trains at each of 

the timing points on each train’s route

• We consider timing points within 50 miles 

of Leicester station (225 timing points)

Some 

timing 

points 

in the 

problem

An example of the schedule feed data



Leicester Station Simulation

36



Max-Min Ant System (MMAS) 
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Each node in the 

graph represents a 

train and the platform 

to assign the train to

An ant starts on node 0 

The ant chooses next 

node probabilistically

Ant Solution:

<Train A on Platform 2>

The ant now chooses 

the next train & platform

Ant Solution:

<Train A on Platform 2,  

Train B on Platform 3>

• After all ants have 

made a tour, all 

pheromone trails 

are evaporated

• Pheromone is laid 

down between 

the nodes on the 

best ant’s tour

• In ACO ants communicate indirectly via pheromone trails 

• We model the problem with a directed edge graph

• Ants decide which node to choose next based on the 

values of pheromone trails and problem-specific heuristics



Algorithm Design
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After a Dynamic Change:  

• More trains have arrived, but some trains 
have passed through the station

• The graph is updated but pheromones 
are kept between changes to retain 
useful information from before change

Unnecessary Platform Reallocation:
• MMAS has no mechanism to persuade it 

against unnecessarily reallocating trains to 

platforms. To resolve this, we:

1. Add a heuristic based on the physical 

distance between platforms

2. Introduce a best-so-far ant replacement 

scheme that discourages unnecessary 

reallocations of trains to new platforms

Image source: http://www.adelaidenow.com.au//



Comparison Algorithm
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First Free Platform (FFP)
• Discussions with a Network Rail Station Master established that a 

technique often used to reallocate delayed trains to platforms is to 

find the first free platform as close as possible to the original platform

• We compared our MMAS algorithm to a heuristic using this principle

Modelling Dynamism

The frequency of change f is the time interval between delayed trains. 

The magnitude of change m is how much the train is delayed by

In this investigation trains were delayed by 10, 20 and 30 min with gaps 

of 10, 20 and 30 min to give 9 different dynamic scenarios



Experimental Results
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Low frequency, high magnitude changes High frequency, high magnitude changes

J. Eaton and S. Yang. Railway platform reallocation after dynamic perturbations using ant colony 

optimisation. Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence, pp. 1-8, 2016



Case Study: ACO for DM-RJRP

• Dynamic multi-objective railway junction re-scheduling 

problem (DM-RJRP):
➢ To find a sequence of trains to pass through two junctions (North 

Stafford and Stenson) on the Derby to Birmingham line under delays

➢ Two objectives:
• Minimising timetable deviation

• Minimising additional energy expenditure

➢ Dynamic: 
• As trains are waiting to be rescheduled at the junction, more timetabled 

trains will be arriving, which will change the nature of the problem

  Junction before a change                                   Junction after a change
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Case Study: ACO for DM-RJRP

• The North Stafford and Stenson junctions train simulator: 
➢ Developed using C++ Visual Studio 2012

➢ Dynamism: 
• Introduced to the simulator by adding m trains at f minutes, where m 

and f denote the magnitude and frequency of change, respectively

42



Case Study: ACO for DM-RJRP

• ACO for DM-RJRP: a graphical representation
➢ A fully connected, partially one-directional, weighted graph

➢ Each node represents a train

• All ants are initially placed at an imaginary start node (zero)

    Node matrix before a change                    Node matrix after a change 43



Case Study: ACO for DM-RJRP

• DM-PACO:  a new version of P-ACO for DM-RJRP

➢ A pheromone and heuristic matrix for each objective

➢ An archive to store non-dominated solutions (repaired after a change)

➢ A memory: created from the archive and re-created after a change

• DM-MMAS: a new version of Max-Min Ant System (MMAS) 

➢ A pheromone matrix for each objective

➢ An archive to store non-dominated solutions

➢ Four designs based on clearing archive or pheromones after changes

• Peer algorithms: NSGA-II and FCFS
44



Case Study: ACO for DM-RJRP

• Findings:
➢ All ACO algorithms can find a POS of solutions for the DM-RJRP

➢ DM-PACO outperformed DM-MMAS algorithms

➢ DM-PACO also outperformed NSGA-II and FCFS

➢ For large and frequent changes:
• Good to retain an archive of non-dominated solutions 

• Good to update pheromones for new environments

➢ Interaction between objectives are more complex than expected 

45

J. Eaton, S. Yang, and M. Gongora. Ant colony optimization for simulated dynamic multi-objective railway 

junction rescheduling. IEEE Transactions on Intelligent Transportation Systems, 18(11): 2980-2992, 2017



Advanced Topics

• EC for DOPs: Theoretical Development

• EC for Dynamic Multi-objective Optimization Problems 

(DMOPs)

• EC for Dynamic Constrained Optimization Problems 

(DCOPs)

46



EC for DOPs: Theoretical Development

• So far, mainly empirical studies. Theoretical analysis has 

been limited

• Runtime analysis:

➢ Stanhope & Daida (1999) first analyzed (1+1) EA on the dynamic 

bit matching problem (DBMP)

➢ Droste (2002) analyzed first hitting time of (1+1) ES on the DBMP

➢ Rohlfshagen et al. (2010) analyzed how the magnitude and speed 

of change may affect the performance of the (1+1) EA on two 

functions constructed from the XOR DOP generator
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• S. Droste. Analysis of the (1+1) EA for a dynamically changing onemax-variant. CEC’02, pp. 55-60, 2002

• S.A. Stanhope, J.M. Daida. (1+1) genetic algorithm fitness dynamics in a changing environnements. 

Proceedings of the 1999 IEEE Congress on Evol Comput, vol. 3, pp. 1851-1858, 1999.

• P. Rohlfshagen, P.K. Lehre, X. Yao. Dynamic evolutionary optimisation: An analysis of frequency and 

magnitude of change. GECCO’09, pp. 1713-1720, 2009.



EC for DOPs: Theoretical Development

• Analysis of dynamic fitness landscape: 

➢ Branke et al. (2005) analyzed the changes of fitness landscape 

due to changes of the underlying problem instance

➢ Richter (2010) analyzed the properties of spatio-temporal fitness 

landscapes constructed from Coupled Map Lattices (CML)

➢ Tinos & Yang (2010, 2014) analyzed properties of the XOR DOP 

generator based on the dynamical system approach of the GA
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• J. Branke, E. Salihoglu, S. Uyar. Towards an analysis of dynamic environments. GECCO’05, pp. 1433-

1439, 2005.

• H. Richter. Evolutionary optimization and dynamic fitness landscapes: From reaction-diffusion systems to 

chaotic cml. Evolutionary Algorithms and Chaotic Systems, Springer, pp. 409-446, 2010.

• R. Tinos, S. Yang. An analysis of the XOR dynamic problem generator based on the dynamical system. 

PPSN XI, LNCS 6238, Part I, pp. 274-283, 2010.

• R. Tinos, S. Yang. Analysis of fitness landscape modifications in evolutionary dynamic optimization. 

Inform. Sci., 282: 214-236, 2014.



EC for Dynamic Multi-objective Optimization

• So far, mainly dynamic single-objective optimization

• Dynamic multi-objective optimization problems (DMOPs)
➢  Even more challenging

•  Recently, rising interest in studying EC for DMOPs
➢ Farina et al. (2004) classified DMOPs by changes on Pareto optimal solutions

➢ Goh & Tan (2009) proposed a competitive-cooperative coevolutionary 

algorithm for DMOPs

➢ Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA 

(DOMOEA) to solve a DMOP with continuous decision variables

➢ Jiang & Yang (2017a) proposed a new benchmark MDOP generator

➢ Jiang & Yang (2017b) proposed a Steady-Generational EA for DMOPs

➢ Eaton et al. (2017) applied ACO for the dynamic multi-objective railway 

junction rescheduling problem

➢ Zhang et al. (2020) proposed novel prediction strategies for DMOPs.

➢ Hu et al. (2023) proposed to handle dynamic multi-objective optimization 

environments via layered prediction and subspace-based diversity maintenance.
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• S. Jiang, S. Yang. A steady-state and generational evolutionary algorithm for dynamic multi-objective optimization. 

IEEE Transactions on Evolutionary Computation, 21(1): 65-82, 2017

• S. Jiang, J. Zou, S. Yang, and X. Yao. Evolutionary dynamic multi-objective optimization: A survey. ACM Computing 

Survey, 55(4), Article 76, pp. 1-47, April 2023.



EC for Dynamic Constrained Optimization (DCOPs)

• So far, mainly unconstrained DOPs

• Recently, rising interest in studying EC for DCOPs:

➢ F. Wang, M. Huang, S. Yang, and X. Wang. Penalty and prediction 

methods for dynamic constrained multi-objective optimization. Swarm 

and Evolutionary Computation, 80, Article 101317, July 2023.

➢ Q. Chen, J. Ding, Gary G. Yen, S. Yang, T. Chai. Multi-population 

evolution based dynamic constrained multiobjective optimization under 

diverse changing environments. IEEE Trans. Evol. Comput., in press, 

2023.

➢ Y. Wang, J. Yu, S. Yang, S. Jiang, and S. Zhao. Evolutionary dynamic 

constrained optimization: Test suite construction and algorithm 

comparisons. Swarm and Evolutionary Computation, 50, Article 100559, 

2019.
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EC for DOPs: Challenging Issues

• Detecting changes:

➢ Most studies assume that changes are easy to detect or visible to 

an algorithm whenever occurred

➢ In fact, changes are difficult to detect for many DOPs

• Understanding the characteristics of DOPs:

➢ What characteristics make DOPs easy or difficult?

➢ Little work, needs much more effort

• Analysing the behaviour of EC methods for DOPs:

➢ Requiring more theoretical analysis tools

➢ Big question: Which EC methods for what DOPs?

• Real world applications:

➢ How to model real-world DOPs?
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EDOLAB - Motivation

• Evolutionary dynamic optimization algorithms (EDOAs) 

incorporate multiple components and mechanisms, leading 

to high algorithmic complexity and challenging re-

implementation.

• Published descriptions often omit critical implementation 

details, making re-implementation time-consuming and 

error-prone.

• Inconsistent handling of changes and random seeds 

causes unreliable benchmark comparisons.

• A unified, standardized platform is needed for fair 

evaluation, reproducibility, and lowering the entry barrier 

for EDOA research.
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About EDOLAB 

• What is EDOLAB? 

➢ An open-source MATLAB platform for research and teaching in 

dynamic optimization, with a focus on moving-optimum tracking in 

single-objective continuous problems.

• Design Goals and Key Features

➢ Comprehensive Library: 27 EDOAs + 4 fully‐parametric dynamic 

benchmarks.

➢ Experimentation Interface: GUI & script modes, parallel runs, 

.mat-file save/restore, Excel export

➢ Built-in Analysis & Visualization: Automated non-parametric tests, 

sensitivity analysis, box- and trend-plots

➢ Modular & Extensible: Easily add new algorithms, benchmarks, or 

performance indicators

➢ Educational & User-Friendly: 2D dynamic visualization app and 

clear, well-commented MATLAB code
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EDOLAB - Comprehensive Library

• 27 Classic Dynamic Optimization Algorithms
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EDOLAB - Comprehensive Library

• 4 Dynamic Benchmark Generators (MPB, GDBG, FPs, GMPB)
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EDOLAB - Experimentation Application

• Experimentation application is designed for conducting 

and managing optimization experiments.

➢ Configure all algorithm and benchmark parameters via GUI

➢ Run multiple experiments in parallel

➢ Save/load experiment results using .mat files

➢ Export results to Excel for easy reporting

➢ Built-in statistical analysis: 

• Friedman test

• Wilcoxon signed-rank test 

• Wilcoxon rank-sum test

➢ Visualization tools: 

• Box plots for performance distributions

• Trend plots for over time behavior analysis
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EDOLAB - Experimentation Application

• Experimentation application is designed for conducting 

and managing experiments.
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EDOLAB - Experimentation Application

• Built-in statistical analysis: 
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EDOLAB - Experimentation Application

• Visualization tools: Trend Plots

➢ Show the evolution of selected performance indicators over time, 

e.g., Eo versus fitness evaluations or Ebbc versus environment 

number
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EDOLAB - Experimentation Application

• Visualization tools: Box Plots

➢ Notched box plots visualize the distribution of final performance 

indicator values across tasks
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EDOLAB - Experimentation Application

• Visualization tools: Current Error Plot

➢ The current error of the best-so-far solution within the current 

environment, averaged across all runs
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EDOLAB – Education Application

• The education application allows users to visually observe 

the current environment, environmental changes, and the 

behavior of individuals over time. 
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Get Started with EDOLAB

• Check out our GitHub repository(https://github.com/Danial-

Yazdani/EDOLAB-MATLAB)

➢ Read the User Manual: Detailed usage instructions are available in 

the EDOLAB folder

➢ Report Issues & Ask Questions: Use the “Issues” tab on GitHub to 

report bugs, request new features, or ask for help

➢ Share Your Algorithms & Benchmarks: Fork the repo, add your own 

EDOAs or benchmarks, and submit a pull request

➢ Stay Updated: Star  the project to follow updates, watch the 

repo to receive notifications about releases and discussions
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EC for DOPs: Future Work

• The domain has attracted a growing interest recently

➢ But, far from well-studied

• New approaches needed: esp. hybrid approaches

• Theoretical analysis: greatly needed

• EC for DMOPs, DCOPs, and DCMOPs

• Real world applications: also greatly needed

➢ Fields: logistics, transport, MANETs, data streams, social networks, 

...
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Summary

• EC for DOPs: important area

➢ The domain is still young and active

➢ Many challenges to be taken

• More young researchers are greatly welcome!
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Two Relevant Books
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• S. Yang and X. Yao (eds.), 

Evolutionary Computation for 

Dynamic Optimization Problems, 

in the series Studies in 

Computational Intelligence, vol. 

490, Springer, 2013

• S. Yang, Y.-S. Ong, Y. Jin (eds.), 

Evolutionary Computation in 

Dynamic and Uncertain 

Environments, in the series Studies 

in Computational Intelligence, vol. 

51. Springer, March 2007



Relevant Information

• IEEE CIS Task Force on EC in Dynamic and Uncertain 

Environments (https://ieee-tf-ecidue.cug.edu.cn/)

• Source codes: http://www.tech.dmu.ac.uk/~syang/publications.html

• Survey papers:

➢ S. Jiang, J. Zou, S. Yang, and X. Yao. Evolutionary dynamic multi-objective 

optimization: A survey. ACM Comput. Survey, 55(4), Article 76, May 2023.

➢ D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao. A survey 

of evolutionary continuous dynamic optimization over two decades—Part A. 

IEEE Trans. on Evol. Comput., 25(4): 609-629, 2021.

➢ D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao. A survey 

of evolutionary continuous dynamic optimization over two decades—Part B. 

IEEE Trans. on Evol. Comput., 25(4): 630-650, 2021.

➢ M. Mavrovouniotis, C. Li, and S. Yang. A survey of swarm intelligence for 

dynamic optimization: Algorithms and applications. Swarm and 

Evolutionary Computation, 33: 1-17, 2017.

➢ T. T. Nguyen, S. Yang, J. Branke. Evolutionary dynamic optimization: A 

survey of the state of the art. Swarm and Evol. Comput., 6: 1-24, 2012.
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