VBA Trainer - Getting Started De Montfort University, Leicester

Contents: Page
Preface

Why should you use this Trainer? Vi

Pre-requisite knowledge Vi

Why use VBA? vii

Other sources of information vii

PART 1 —BASICS 1

11 Some Terminology and Explanations 1
1.1.1 Form, Report and Access Modules 1

1.1.2 Procedures — Sub and Function 2

1.1.3 Properties and Methods 2

1.1.4 Event-Based Programming 3

1.2 A First Look at a Code Module 3
1.3 The Help Systems 5
1.4 Creating and Debugging a simple Function 6
1.4.1 Create a simple function 6

14.2 Compiling your code 8

14.3 Debugging your code 8

1.4.3.1 The Debug Toolbar 8

1.4.3.2 Using the Immediate Window 8

1.4.3.3 Breakpoints, Stepping into code, watching values 10

15 Using a Function in Queries 10
1.6 Running a Query from a Command Button 12
1.7 Creating & Using Message & Question Procedures 14
1.71 Sending a Message to the screen 14

1.7.2 Asking a Question 17

1.7.3 Getting a Value from the screen 17

1.8 Documenting your Code 18
1.8.1 Using a standard form 18

1.8.2 Using a database 18

1.9 Exercises 19
1.91 myDisplayWarningMessage sub procedure 19

1.9.2 Improving the myUpdateFee function 19

1.9.3 Running an Update Query 20

PART 2 — USING EVENT CODE ON FORMS — DATA MAINTENANCE 21

21 Introduction 21
2.2 Viewing Data 23
2.2.1 Setting a form default 23

222 Using a View Command Button 24

2.2.3 Setting a default for each new record 24

224 Using a common procedure 25

2.3 Editing Data 25
2.4 Showing which is the active button 25
241 By changing text colour on command buttons 25

2.4.2 By using labels to simulate raised/sunken buttons 27

24.3 By using labels to look like hyperlinks 28

244 Some useful command button properties 29

25 Saving Records 30
2.5.1 Using a Save button 30

252 Using the Form_BeforeUpdate event 31

2.5.3 Using the Form_AfterUpdate event 32

2.6 Adding and Deleting Records 32
2.6.1 Add a New Record 32

2.6.2 Delete an Existing Record 34

2.7 Exercises 35
2.71 Buttons to Renew Membership and Change Address 35

2.7.2 Use Cancel Button on Membership Form 35

2.7.3 Stock Levels Form 35

274 Enabling/Disabling Close button 35

Continued...

VBA Starting v5-1.doc i Version 5.1 — July 2005

VBA Trainer - Getting Started

Contents:

3.1
3.2

3.3

3.4

3.5

3.6

3.7

4.1
4.2

VBA Starting v5-1.doc ii

PART 3 — USING EVENT CODE ON FORMS — MISCELLANEOUS FEATURES

Introduction
Automatic Calculations

3.21 Stock Form
3.2.2.1 Value of Each Stock item
3.2.2.2 Highlighting low stock
3.2.2.3 Adding Stock
3.2.2 Showing the Member’s Age on the Membership Form
3.2.2.1 A myCalculateAge Function
3.2.2.2 Showing the Age on the Form
3.2.3 Showing the Category type on the Membership Form
Validations
3.3.1 Field Validations
3.3.2 Form Validations
3.3.3 Parameter Validations

3.3.3.1 Single parameter
3.3.3.2 Two parameters for a value range

Searching for Records

3.4.1

34.2

Replacing the Navigation Bar Functions
3.4.1.1 Next/Previous Records
3.4.1.2 Count of Records

Looking for a Particular Record

Applying a filter to the form (with a count of records)

3.5.1
35.2
353
354
3.5.5
3.5.6
3.5.7
3.5.8

Filtering on a text (string) field with wildcard
Filtering on a text(string) field for an exact match
Filtering on a numeric field

Filtering on a Yes/No field

Filtering on a date field

Removing a filter

Combining filters

Filtering on Null values

Using Combo and List Boxes on Forms

3.6.1 Some useful Combo and List Box properties
3.6.2 Changing Combo Box contents at run time
3.6.3 Using a list box to select records and change contents at run-time
3.6.3.1 Create a form based on the Class list table
3.6.3.2 Add two list boxes in the form footer
3.6.3.3 Add a text box called txtLetters near to IstMember
3.6.3.4 Create double-click event for IstMember
3.6.3.5 Check if member is already registered on the class
3.6.4 Addltem and Removeltem methods
3.6.4.1 Using Additem
3.6.4.2 Using Removeltem
Exercises
3.7.1 Implement Receive Stock function, with validations
3.7.2 Show the total stock value on the stock form
3.7.3 Function to calculate the number of years between any two given dates.
3.74 Filter on Sporting interests
3.7.5 Combine Filters
3.7.6 Filter by Sex
3.7.7 Check for missing required fields
3.7.8 Create mylsAlphabetic function
3.7.9 Check for existing bookings (prevent double bookings)
3.7.10 Show booking history per member

PART 4 — USING EVENT CODE ON FORMS - MENUS

Introduction
Creating and using a Main Menu

4.21
422

Starting a menu — dynamic date & time, day of week
Improve the menu appearance

De Montfort University, Leicester

Page

69

69
69
69
70

Continued...

Version 5.1 — July 2005

VBA Trainer - Getting Started

Contents:

4.3

4.4

5.1
5.2
5.3
54
5.5

5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3

4.2.3
424
425
4.2.6
4.2.7

Command button to load a form
Open menu automatically on start-up
Exiting the application

Control tips

Accelerator keys

Data Maintenance via a Sub Menu

4.3.1 Create a sub menu

43.2 Exiting from the sub menu

4.3.3. Amend Membership form

43.3 Editing Membership records

43.5 Viewing Membership records

4.3.6 Adding new Membership records

4.3.7 Deleting existing Membership records

4.3.8 Try this

4.3.9 Opening the form with a particular record

Exercises

441 ‘Are You Sure?’ procedure on exit

442 Sub Menu buttons for Renew Membership and Change Address
443 Show count of records added

444 Open SubMembership form for a particular member number
445 Provide data maintenance facilities for Stock via a sub menu
446 Using a system heading in a table

PART 5 — USING EVENT CODE ON REPORTS

Introduction

Report of members who joined 10 or more years ago
Changing the appearance of a field at run-time
Calculating and printing totals

Empty reports

5.5.1
55.2

Using the Report_NoData event and cancelling the report
Printing an ‘empty’ report

Using a query criteria parameter at run time
Changing the sort order at run-time
Suppressing detail lines

Exercises

5.9.1
5.9.2

Member report
Stock report

PART 6 — EMBEDDED SQL

Introduction

The RunSQL method of the DoCmd object
Adding arow to atable

Updating arow in a table

Creating and dropping tables

Deleting a row from a table

Exercises

6.7.1
6.7.2

Add values to Town and County combo boxes at run-time
Record class sales

PART 7 — MISCELLANEOUS

Introduction
Using tab controls on forms
Importing/Exporting spreadsheet data

7.31
7.3.2
7.3.3
7.3.4

The TransferSpreadsheet method

Importing, using a named range and named columns
Importing, using un-named columns

Importing, using a defined range

VBA Starting v5-1.doc iii

De Montfort University, Leicester

Page

71
71
71
72
72
72
72
73
73
73
74
74
74
74
75
75
75
75
76
76
76
76

87

87
87
89
91
93
96
98
98
98

99

99

99

101

101

102

105

105
Continued...

Version 5.1 — July 2005

VBA Trainer - Getting Started

Contents:
7.35 Exporting data
7.3.6 Some errors you may encounter
7.4 Backups, compacting, etc
741 Making backups
7.4.2 Compacting your database (keeping the size down)
7.5 Linking to an external database (separating data from the rest)
7.51 DIY method
7.5.2 Using the Database Splitter Wizard
7.5.3 Re-linking after a back-end database has been moved or renamed
7.5.4 Multi-user access to a back-end database
7.6 Preparing your database for distribution
7.6.1 Removing the database window and menu bars
7.6.2 Creating MDE (Microkernel Development Environment) files
7.7 The WITH statement
7.71 Using a single With statement
7.7.2 Using nested With statements
7.7.3 Using With statements with parameter objects
7.8 Exercises
7.8.1 Member bookings tab on Membership form
7.8.2 Record class sales
7.8.3 New Chelmer application
7.8.4 Use the With statement
PART 8 — WORKED EXAMPLES OF BOOKING PROCEDURES
8.1 Introduction
8.2 Example 1 — Member Bookings for Courts
8.2.1 Create table of booking times
8.2.2 Start the Court Bookings form
8.2.3 Create Query to see Court availability
8.24 Use the Outer Join query for a form list box
8.2.5 Do more on the CourtBookings form and the Court1 Availability query
8.2.6 Viewing Court availability
8.2.7 Making a member booking for a Court
8.2.8 Preventing double-bookings
8.2.8.1 Using DCount
8.2.8.2 Setting a unique index
8.29 Deleting a member booking
8.2.10 Finally...
8.3 Example 2 — Class Bookings for Rooms/Halls
8.3.1 Start the Class Bookings form
8.3.2 Selecting a class
8.3.3 Creating a BookingDate table
8.4.4 Seeing Class availability
8.3.5 Making the Bookings and checking for double-bookings
8.3.6 Finally...
8.4 Example 3 — Make bookings using a ‘diary page’ grid
8.4.1 Creating a Crosstab query
8.4.2 Create the diary page form
8.4.3 Specify a booking date via a parameter
8.4.4 Trap the error where the Crosstab columns are missing
8.4.5 Using Conditional formatting for the booked/free slots
8.4.6 Making Bookings
8.4.6.1 Making a start
8.4.6.2 Setting up a Bookings form
8.4.6.3 Making member/Class Bookings
8.4.6.4 Using a list box for the Membership/Class No
84.7 Deleting Bookings
8.4.8 Finally...
8.5 Exercises
8.5.1 Member Bookings
8.5.2 Class Bookings
8.5.3 Using a ‘diary page’ grid
854 Recording attendance

VBA Starting v5-1.doc iv

De Montfort University, Leicester

Page

106
108
109
109
109
109
110
111
111
111
112
113
113
114
114
115
115
116
116
116
116
116

117

117
118
118
118
119
120
121
122
124
126
126
127
128
129
131
131
132
134
135
136
137
138
138
140
140
142
143
144
144
145
146
147
147
149
149
149
149
149
150

Continued...

Version 5.1 — July 2005

VBA Trainer - Getting Started

Contents:
Appendices:
A Events Overview
B Coding Standards
C Common Coding Errors
D Code Documentation Form
E Some naming conventions for variables, procedures, etc.
F Some basics of programming
F.1 Declaring and using variables and constants
F.1.1 Datatypes
F.1.2 Variables and constants
F.1.3 Scope
F.1.4 Public/Private
F.1.5 Arrays
F.2 Assignment statements
F.2.1 General format
F.2.2 Literals
F.3 Control Constructs
F.3.1 Sequence
F.3.2 Selection
F.3.3 lteration
F.4 Procedures and parameters
G Overview of SQL
GA1 CREATE TABLE
G.2 ALTER TABLE
G.3 CONSTRAINT
G4 INSERT
G.5 CREATE VIEW
G.6 SELECT - inner join
G.7 UNION
G.8 SELECT - outer join
G.9 COMMIT
G.10 GRANT (and REVOKE)
G.11 Aliases
H Built-in functions
H.1 Date and time functions
H.2 String functions
H.3 Maths functions
H.4 Financial functions
H.5 Miscellaneous functions
H.6 Domain aggregate functions
H.7 Type conversion functions
| The Forms Collection
J Some useful DoCmd methods
Index

De Montfort University, Leicester
Page

151
151
152
153
154
156
157
157
157
158
158
159
159
160
160
160
161
161
161
162
163
164
164
164
165
165
165
166
166
166
167
167
167
168
168
168
169
169
170
170
171
172
173

174

A "Further VBA" Trainer is also available. Copies are available from the Student Advice Centre at
Leicester. Students at Associate College Centres should enquire of Centre staff.

Topics covered include:
e password protection

accessing user login

error trapping and custom error messages
using Data Access Objects (DAO)
creating a 'diary page' grid to make, view and delete bookings using DAO code and arrays

VBA Starting v5-1.doc v

Version 5.1 — July 2005

VBA Trainer - Getting Started De Montfort University, Leicester

PREFACE
Why should you use this Trainer?

If you intend using MS Access for a project module (HNC, HND or Degree) then you will almost
certainly need to use some VBA to improve on the standard features provided by Access.

The purpose of this Trainer (and the "Further VBA" Trainer also available) is to provide a self-study
opportunity for students who wish to extend their knowledge of Microsoft Access features and learn
how to use VBA. Code in this document was written and tested using Access 2002 with Access 2000
file format (the default format).

Many textbooks list code elements of VBA and provide little, often disjointed, examples of code.
Students, who may not have a detailed and experienced background of commercial programming,
often find it difficult to make the connection between little examples and what they want to do in their
assignments and projects. Building and programming systems involves problem-solving techniques;
programming involves a great deal more than just writing code. The main sticking point for many
students is in actually understanding how to use the tools available in order to solve a business
problem. VBA is demonstrated here by showing the practical applications of techniques for situations
that arise in applications, by building up code to improve a database created purely by the standard
‘point-&-click’ facilities of Access.

VBA is a fourth generation programming language (4GL) provided with Access. Previous versions of
Access used macros to provide some custom facilities, but this is now being phased out in favour of
VBA and will not be covered here (see Appendix J). VBA can also be used within other Microsoft
Office applications, such as Word and Excel; note that the ‘A’ stands for ‘Applications’, not for
‘Access’. By working through the examples here, you will become familiar with using VBA, the
Debugger and Help system, and should gain the confidence and knowledge to be able to explore VBA
more fully yourself for items that are not covered here. Using this Trainer should also help you to
understand event-based programming; see also Appendix A.

Most of the code used in this document is pretty simple; just small pieces of code which can make a
big difference to the professional ‘look and feel’ of your system, and with which most students should
be able to cope. There is a "Further VBA" Trainer which introduces more advanced coding.

You are expected to work through all the examples shown. Later examples will depend on the earlier
examples having been done. Each section ends with a selection of exercises, which may also depend
on earlier examples and/or exercises.

Pre-requisite knowledge

This Trainer assumes that...

e ...you have a good foundation knowledge of MS Access ‘point-&-click’ facilities, such as given by
the book Smart Guide to Access 2000, Further Skills, by Nat McBride, published by Thompson.
This book is used on several database modules at DMU. Throughout this Trainer, the textbook
will be referred to as McBride.

e _...you know how relational databases are designed and constructed (this is useful but not
essential for this Trainer).

e ...you have created the tables for the Chelmer Leisure Database as used in the above-mentioned
textbook, and have created (or can create) the Membership and Membership Category forms.
o The Chelmer Leisure database used in McBride has some oddities of design, but is used here
exactly as it is in the textbook, so that you can continue to use the database that you may
have created already at DMU.

e ...you have a good basic understanding of programming and coding principles, including:
o Datatypes, variables, scope, arrays
o0 Assignment statements, strings, literals, operators, expressions
o Control constructs such as IF, WHILE, CASE
o Creating and using procedures and functions, using parameters
o SQL (see also Appendix G).
See Appendices B, C, E & F for further information and an overview of some programming topics.

VBA Starting v5-1.doc Vi Version 5.1 — July 2005

VBA Trainer - Getting Started De Montfort University, Leicester

Note that the purpose of this Trainer is not to show you how to code everything you will need in Visual
Basic, but to get you started with using VBA as a 4GL with Access.

You should also note that, when creating a database, there is no substitute for a good design. Time
spent analysing user and data requirements and deriving tables is time very well spent. Before
creating your tables, check that all the known (and some predictable) requests for tasks and reports
can be satisfied (i.e. verify your design). The earlier an error is spotted (and, of course, removed) the
less time has to be spent later trying to fix the problem. Once you are satisfied that your tables are
correct, you can plan the structure of your forms, how they will be used (this helps when planning
buttons, combo boxes and the like), and plan the layout of your reports, perhaps trying prototypes to
test out ideas. Remember that a database is not just about the data that is in it but is about how the
user will use it and the information and functions that the database can provide to the user. There is
not much point putting data into a database if you are not going to do anything with it!

Design is also necessary with code, as you need to work out the logic of what you want to do before
you code it. You must then test it thoroughly. At various points throughout this document pointers to
help you with code design and testing are given, to try to encourage you to think ‘design, code, and

test’ rather than simply ‘code’.

Why use VBA?

By using the basic facilities provided in Access (such as the menus, property boxes, wizards) you can
create a simple database pretty quickly. But Access is a general software package and there are
bound to be things that you want to be able to that do that Access does not do, or does not do in the
way that you want. To create a really professional application (and to do a good project) you will need
to code in VBA.

Some examples of occasions for which you will need VBA code are:

e To perform a calculation that is too complex for a built-in expression.

e To avoid duplicating code in several places, by writing a standard procedure or function that can
be re-used whenever wanted.

e To provide graceful and appropriate error handling, with more useful and relevant messages for
the user.

e To document your database, as code can be printed and maintained. (It is very easy to forget how
you created a complex feature if you did it via standard Access facilities).

e To give a more professional and personal look and feel to your application.

e To assist data entry for the user (perform calculations automatically, perform complex validations,
anticipate what the user may wish to do, enable/disable form controls, etc).

o To display information messages to the user (e.g. ‘Record updated OK’).

e To add code behind buttons on forms, create menus, etc.

e To prevent users from changing data when they do not mean to (the Access default is to allow
users to change all data).

And much more besides...

Other Sources of Information

Check out Various Teaching Materials for MS Access and VBA on my home page at
http://www.cse.dmu.ac.uk/~mcspence/Access. This site has answers to questions asked by students
studying database modules, when doing HNC, HND and Final Year projects and when on placement.
There are also several example databases there, most arising out of situations that have arisen during
project development or placement work; these are not reproduced in this document (it seems
pointless to duplicate things). The site also has links to other sites that you may find useful.

Any Comments?
If you have any comments about this Trainer, have spotted any errors or have any
suggestions for improvement, please email mary.spence@dmu.ac.uk

VBA Starting v5-1.doc vii Version 5.1 — July 2005

mailto:mary.spence@dmu.ac.uk�
http://www.cse.dmu.ac.uk/~mcspence/�

VBA Trainer - Getting Started Part 1 — The basics

PART 1 - THE BASICS

In this part of the Trainer you will see...

o ...that VBA code is organised into modules. Each form and report has its own module for event
code created automatically by Access. Developers can also create modules for other code.

o ...that modules consist of a series of procedures (subs and functions, and can contain global or
local constants or variables.

o ...that VBA involves event-based programming, where code is triggered by an event such as
the user clicking on a form object.

e ...how to code, compile and run a procedure in an Access module and to see VBA code

generated automatically by the Access Command Button Wizard. Such code can be edited to
allow custom features.

o ...that objects on forms and reports have specific events attached to them.

e ...that event code can be created/opened by clicking on the ‘build’ icon in the property box, or
via the drop-down lists at the top of the module code window.

e ...that form and report modules can contain private procedures for use only within that code
module.

o ...that procedures to be used from more than one place are best coded in a separate Access
code module (good practice).

e ...that reusable procedures can be very useful, and will repay any initial work needed to set
them up.

e ...some basic features of the Access Debug facility: breakpoints, stepping through code, looking

at data values.

...that user-defined functions can be used (indeed, reused) directly in queries.
...how to display messages and ask questions.

...a simple method of asking for a value from the user.

...suggestions for documenting your code.

See Appendix A for a list of events that occur for Access objects.

See Appendices B and C for some help and advice when coding.

See Appendix D for a blank code documentation form and examples of use.

See Appendix E for some suggestions for naming conventions for variables, procedures, etc.
See Appendix F for an overview of some basics of programming.

See Appendix G for an overview of SQL.

See Appendix H for details of built-in functions.

1.1 Some Terminology and Explanations

1.1.1 Form, Report and Access Modules

All VBA code is organised (contained) in Modules.

Form Modules — there is one module per form with code applicable to that form.
Report Modules — there is one module per report with code applicable to that report.

Access Modules — these are used for free-standing code, such as general-purpose procedures
and functions. You can have as many of these as you like in a database.

Form and report modules are created automatically by Access.
You create Access modules, as you need them.

VBA Starting v5-1.doc Page 1 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics
1.1.2 Procedures — Sub and Function

Procedure “ A named sequence of statements executed as a unit. For example, Function, Property,
and Sub are types of procedures. A procedure name is always defined at module level. All executable

code must be contained in a procedure. Procedures can't be nested within other procedures.”
Extract from Access 2002 help.

A module consists of a series of subs or functions.

e A Sub (often referred to just as a Procedure) is a piece of code that performs a specific task
(known as a subprogram or subroutine in some other languages). It is referred to by name when it
is needed; this is known as calling or invoking the procedure. It may use arguments (also known
as parameters) if needed.

e A Function is a particular type of procedure that simply returns a value. It may optionally take
arguments as input values.

o There are several standard (built-in) functions in Access, such as Date(); see Appendix H.
When you code =Date() for a database field, you are calling the Date function, and storing the
value returned in the field you have specified. The empty brackets after the function name
show that this function does not use any arguments.

e Subs and functions within modules can be Private or Public — Private means that they can be
used only within the module in which they are written; Public means that they can be used by
other modules as well (Public procedures/functions are normally written in an Access Module).

e For further information use the VBA Help Answer Wizard with the text “calling sub and function

procedures”. Also see Appendix F.4.
Icmdclose j

Format | Data | Event | other Al I
RAME .« eeee e FridClose
Caption . . .
1.1.3 Properties and Methods e iee
Transparent . . . o
Default Mo

.. (none)
.. Embedded

You will be aware that forms, reports, and the objects on SR

them, have Properties. For example, a command button has FasBrTet

an Enabled property that can be set to Yes (True) or No Ffperink subAdess -

(False) to determine whether the button is to show or be s i s
—— P Enabled ... Vs

greyed-out. Tabstop. .- L ves

TabIndex.............]
lefiococouo00o000uoo00 4.683cm
o 1.138cm

Top. v .
. 1.825em

Fig 1.1.1 shows some of the properties for a command button wickh

to close a form. The button has been given the name of P N
cmdClose. (See Appendix E for examples of naming FortHame e - Tehoma

H onk Weight larmal
conventions). AU e o o i

Font Undetline Mo
. . Shorkcut Menu Bar . .4y

Most of these properties can also be set using VBA code: e B

cmdClose.Enabled = True (or False) Tag. oereens

[l

The general format for assigning a value to a property is:
ObjectName.Property = Value Fig 1.1.1 Properties Window

Note the use of the dot (.) operator to specify the Property for the ObjectName. Access Help has the
following information:
The . (dot) operator
The . (dot) operator usually indicates that what follows is an item defined by Microsoft
Access. For example, use the . (dot) operator to refer to a property of a form, report,
or control. You can also use the . (dot) operator to refer to a field value in an SQL
statement, a Microsoft Visual Basic for Applications method or a collection.

When you code these statements in VBA, the VB Editor will provide cmiClase.d
useful prompts after you type the . (dot), as shown in Fig 1.1.2.]

B&' EventProcPrefic
&' FontBold

E& Fontitalic

E& Fonthame

E& FontSize

E& FontUnderline

Fig 1.1.2 Prompt for property(note icon)
VBA Starting v5-1.doc Page 2 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Forms, reports and the objects on them also have Methods. The format for specifying a method also
uses the dot operator:
ObjectName.Method {optional Arguments} [Category No].sei

=

E& ShortcutMenuBar

The VB Editor will also provide prompts for methods, as shown in Fig 1.1.3. = gizeToFit
The SetFocus method will move the cursor to the object named (useful when e
validating a form field if you want the user to enter the value again). e Tahindex

E& TabStop

e.g. [Category No].SetFocus will move the cursor to the Category No field.

Fig 1.1.3 Prompt for method (note icon)

Methods for forms and reports do not always need to specify the ObjectName. If it is omitted, then the
current form or report is assumed. For example, if you wish to Repaint a form (in order to show details
of records that have been updated in tables, list boxes, and combo boxes etc) you can code

Repaint or Me.Repaint
Me means the current form/report. If you code using Me then you will get the prompt box to help you.

1.1.4 Event-Based Programming

With VBA in MS Access you will be performing event-based programming. An event is simply
something that happens in response to something else, such as an action by the user (clicking on a
command button, for example). The user is largely in control of the order of events. This is quite
different from procedural programming, where the program is in charge of the order of events.

A single action, whether by the user or by VBA code, can trigger other events that neither you nor the
user may be aware of. It is important that you, as a programmer, are aware of this. For further
information see MS Access Help (oddly, not VBA Help) and type order of events into the Help Answer
Wizard. If you view all, and wish to print the information out, it takes four pages.

There are many types of event. See Appendix A for an overview of the events for forms, reports,
command buttons, combo boxes, etc. The full list of programmable events for each object is shown on
the Event tab of the object’s property box.

1.2 Afirstlook at a code module
Icon to view code
There are several ways of accessing code modules to see, add, amend or delete code:
e For code for a form or report:
o Open the form or report in design mode and click on
the view code icon (also available via the View menu). e et
This method is useful if you wanted to add a procedure | oo s o ¢ el o e sae & o
to be called from an event procedure or if you wanted
to look at, or print, all the code.
o Open the form or report in design mode and double

‘osoft Access

g8 Chelmer Leisure GS ¥5 : Database {Access 2| file format)

click or right-click on the object name for which you oo b oesn cgten | X | % - [FEJ
want to add an event, and then select the event type T | I e——
from the property box. This method is useful to get Tables Create form by using wizard
directly to existing code or for quick creation of the Queries b—
required header and footer for a new piece of event Foms -
COde. B reports
o For free standing code in an Access standard module, click E -
the modules tab in the database window, then create a Pt Hodes
new module or open an existing one, as appropriate. Saus
[#] Favorites

Fig 1.2.1 How to view a code module

VBA Starting v5-1.doc Page 3 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Open your Chelmer Leisure database and look at the form code module for the Membership Category
form. This form is created in Unit 14 of McBride. You will now see the code in the module as shown in

Fig 1 _22 Za Microsoft Yisual Basic - Chelmer Leisure GS ¥5 - [Form_Membership Cal =]
M Fle Edt Wiew Insert Debug Run Toos Adddns Window Help glossary -8 X

Fa-H iER2d 2= » e Y2 @ nso
By n mMm=lEez= BB Rér &,

The form name is highlighted in the little window on

the left. You can open other code windows from [Gensran <] Jwoctoratons -
here by double-clicking on the relevant name. El - Option Carpare Database =

Q%elmer Leisure for Trainer Optian Explicit
-5 Microsoft Access Class Obje

The code'module is empty |n!t|ally apart from two YT

standard lines at the start, which should always be

there as defaults. Once you have set the options T i
they will apply to all new code modules created,

[Membership Ca Form_Membershi |

but will not apply to existing code; you will have to Apbabetc | careored |
code them manually in existing code modules.

Membership Cal &

AfterDelCanfirm
AfterFinalRender

== | Hi
Fig 1.2.2 Code Module Window

options x|

Editor |Editnr Farmat I General I Docking I

—Code Settings

You may need to set Option Explicit as a default. In Access 97 it R uka Syntax Check ¥ Auto Indent

was standard, but in Access 2000/2002 it does not appear to Sl i Tabwdthy [5
. . . [V auto List Members

be. Do this via the code window Tools menu, choose I A e

Options, then set Require Variable Declaration on the W At Data Tips

General tab as shown in Fig 1.2.3. indow Settings

v Drag-and-Drop Text Editing

[Default ko Full Madule View
IV Procedure Separatar

[o]4 I Cancel | Help |
Fig 1.2.3 Setting Option Explicit as a default

Access has a very useful Help facility, which you will use now to see what these two lines mean.
Move the cursor to the word Compare and press keyboard function key F1. You should now see a Help
screen explaining this word. Similarly check Explicit and Option. Now that you know of this facility, do be
sure to make good use of it to check anything you do not understand. This document will assume that
you will do so.

In particular, note the meaning of Option Explicit. | would strongly advise that you always set this option,
otherwise a simple spelling error would cause the declaration of a new variable, and errors like that
are very hard to find.

Click on the arrow to the right of the field headed General in Fig 1.2.2. You will see a drop-down list of
all the objects on the form. This list can be used when creating event code for the selected form object
(and for checking the names of these objects). Click now on the field Category_Type. You will see the
following code in the module window:

Private Sub Category_Type_BeforeUpdate(Cancel As Integer)

End Sub

These lines are the first and last lines for a sub procedure for a BeforeUpdate event on the field Category
Type. The procedure has a single argument with the local name of Cancel and of data type Integer.
Access writes these lines for you automatically, ready for you to enter the code that you want between
them. If the code already existed, Access would assume that you wanted to alter the code, and would
position the cursor ready in the existing code. If you wanted to write code for another event for this
field, simply click on the arrow by the field to the right (Declarations) and choose the event that you
want. See also Appendix A. Use the F1 key to check the meaning of terms in this code. Note
especially the meaning of Private; Access has assumed that the procedure will be used only from this
module. Close the code module window and the form without saving anything.

VBA Starting v5-1.doc Page 4 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Code can also be accessed via the property box for an object. x|
With the Membership Category form open in design mode, |catszory o =l

double click on the Category No field. The property box for the EmE S

field is now displayed. Click on the Event tab (and see the full list & 0

of allowable events for this field) then on the Ciick event. Now e, "
click on the Build icon to the right (the icon with three dots) and e

On ot Focus

choose ‘Code Builder’ from the list shown. See Fig 1.2.4. ——__ ereroas.

ondlick. | |
©n Dbl Click . . .
. g ©n Mouse Down
You are now in the code module positioned ready to enter code OnMouss Move
. . nMouse Up ...
in a sub procedure for the click event on the field Category No. onkey down..
nkey Up ...,
OnKey PrEssoven. .
Private Sub Category_No_Click()
?
End Sub [I i -
e e [1|
. . Cancel
We are not going to enter any code just yet, so close the code
window and the form without saving anything.
Fig 1.2.4 Creating code for an event
Finally, a look at the code window for an Access module. At the main database window, click the
modules tab and then click on New. You will have a window that looks just like the window shown in
Fig 1.2.2 above, but there are some differences:
e The code module name is probably something like Module1. You will be prompted for a name of
your own when you save the module.
¢ Clicking on the General box does not bring up a list of objects (as this is an Access module and is
not attached to anything in particular).
You can create as many Access modules here as you want. It is useful to group all like procedures
together, for example, a module for messages, a module for calculations, etc. Close the window
without saving.
1.3 The Help Systems
In Access 2000/2002 there are two different Help systems. You should all be familiar with the system
available from the database window. VBA Help is available via a code window.
_ i Microsoft Yisual Basic - Chelmer Leisure G5 ¥5 - [Form_Membership Category (Code)] =10l =]
Wt Yew Insert Jools Window Hep E% File Edit Wew Insett Debug Run Tools Add-Ins Window Help glossary - F X
HaGRY e Bla-H L ERd o oy g pkd BHEY @) tn4,calt .
By n mMEEEE: DR &
I(Geneml] j I(Declarmions) ﬂ
£= Chelmer Leisure GS ¥5 : Database (Act ess 2000 file format) = = = e Opt!u rnpare Database z
oo Wiy e X s T i || S et
Objects] creste table in Desigh view Form_Form1
Tables BT] create table by usinglwizard - -8 Form_Membership Cabe
B queris Create table by enterihg data
E Bookings
Forms classL?st - : 2
B Reports Classes Properties - M—mbership Categdd
%) Pages Membarship
2 Marros == I Member ship Categaory
& odies Tokies
Groups
3] Favorites
1

Fig 1.3.1 Two Help systems

J Chelmer Leisure G55 : ... | Membership Categary @ .. | £ Microsoft ¥isual Basic...

VBA Starting v5-1.doc Page 5 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

The formats of the Help windows, and how they work, are the same for the two systems; it is the Help
content that varies. The title bar at the top of each window will tell you which system you are in
(Microsoft Access Help or Microsoft Visual Basic Help). If you cannot find what you are looking for,
check that you are using the right Help system.

Access has an extensive Help system, part of which includes:

o Afull glossary of all terms (so no glossary is included with this document).
0 Access Help links to a web page. This covers 14 pages if you print it off.
o VBA Help refers to ADO (Active Data Objects). This topic is not covered in this Trainer.

o Afull list of all VBA statements, Functions, Constants, etc.
o Look at Visual Basic Language Reference on the Contents tab of VBA Help in Access
2000/2002.
o Most of the Help references have examples of use.

e Instructions on how to debug VBA code. See also section 1.4 below.

You are strongly advised to make full use of these Help systems. In fact, this Trainer assumes that
you will do so. Help screens can be printed via Options.

When you open a code window you are positioned in the built-in VBA Editor, and in a separate
window; see the bar at the bottom of the right-hand screen in Fig 1.3.1. You can move between the
two windows as you wish.

1.4 Creating and Debugging a simple Function

Now it’s time for you to write some code. The Membership Category table holds a list of categories
and annual fees. It is not unusual for lists of this sort to be amended from time to time; we are all used
to the notion of fees increasing. With a small list such as this it is a fairly simple matter to amend the
fees via the form or directly into the table. However, many systems will have much larger numbers of
records to cope with, so it could be useful to have a procedure to update such tables. So we will now
create a function to update the fees and then reuse it. This will be somewhat of a sledgehammer to
crack a very small nut, but the general principles learned here will be of use in your later applications.

1.4.1 Create a simple function

Suppose that the Chelmer Leisure Centre wishes to increase the fees as follows:

Category 1 and 2 - increase by 5%
Category 3 - increase by 7.5%
Category 4 - increase by 10%
Category 5and 6 - no change

Open the code module for an Access Module (see section 1.2 above if you cannot remember how to
do this). Type in the code that is shown in the box in Fig 1.4.1 and save the module with the name
Calculations.

The function header
Public Function myUpdateFee(prmFee As Currency, prmCategory As Byte) As Currency

shows the function name myUpdateFee, two arguments (each with the prefix prm to identify them as
parameter values to the reader of the code; see Appendix E), their data types, and the fact that the
function returns a currency value. The function is Public so that it can be accessed from outside this
module.

Tip: If you prefix all your own procedure names with the letters ‘my’ then you are unlikely to use a
name that is also the name of one of Access’s own procedures. If you do use the same name as
Access, then you will get the error "Compile Error: Expected variable or procedure, not module”.

Comments can start with Rem or an apostrophe(‘). Both methods are shown here. They show with a
green font in the code window (but print out as black, which is a shame).

VBA Starting v5-1.doc Page 6 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Function——

P Public Function myUpdateFee(prgEee As Currency, p
header Rem function increases fees for categories 1 and 2 by 5%, L_value

Rem 3 by 7.5% returned
Rem 4 by 10%
comments Rem 5 and 6 unchanged

Dim curResult As Currency 'local variable for intermediate result

Rarguments

Select Case prmCategory (parameters)

Casels=1,2
curResult = prmFee * 1.05
Casels =3
calculatio curResult = prmFee * 1.075
Casels =4
curResult = prmFee * 1.1
Case Else 'category 5,6 <4—
curResult = prmFee
End Select

comment

myUpdateFee = Round(curResult, 2)

footer » End Function

Fig 1.4.1 Code for myUpdateFee Function

A CASE statement is simply another way of coding IF ... ELSE ... (See Appendix F.3.2)

The statement above is equivalent to:
IF prmCategory = 1 OR prmCategory = 2 THEN
myUpdateFee = prmFee*1.05
ELSEIF prmCategory = 3 THEN
Etc....

If you need to perform multiple checks on the same field, then a CASE statement is often neater than
a series of IFs.

The statement curResult = prmFee * 1.05 is an assignment statement (see Appendix F.2). The result of
multiplying the value in prmFee by 1.05 is assigned to the variable curResult. At the end of the function
the statement myUpdateFee = Round(curResult, 2) assigns a value to the name of the function, so that this is
the value that will be returned by the function. curResult is a local private variable; it exists only within
this procedure.

It is worth noting that Currency datatypes hold values to 4 decimal places, not to 2 as you might
expect; but this is not as illogical as it may seem at first, as it means that calculations are more
accurate. Thus, calculations on these fields may not result in an exact number of pence. Access
2000/2002 has a built-in function Round which is used here to round the final result to two decimal
places. (This function was not available in Access 97). Use the Help system (position cursor to the
word Round and press F1) to have a look at how this function works. While you were typing the code,
you may have noticed the helpful prompt that the VBA Editor gave, as shown in Fig 1.4.2. This prompt
applies when using built-in functions and when using functions that you have written yourself.

ryUpdateFee = Round(]
Round(Number, [NumDigitsAferDecimai As Long]) |

Fig 1.4.2 Prompt box when using a function

But there is a very important omission from Access VBA Help; the Round function works on a round-
to-even basis, not the way that you may think it works.
Example 1. Round(3.1275, 3) = 3.128,
Round(3.5, 0) =4
This is what you would normally expect; 5 is rounded upwards.
Example 2. Round(3.1265, 3) = 3.126,
Round(2.5,0) = 2
This may not be what you would expect, as 5 is now rounded downwards.

In each case, the rounding is such that the last digit in the result is an even number.
For fuller details see http://www.cse.dmu.ac.uk/~mcspence/Access.htm, go to the Frequently Asked
Questions page and look at VBA FAQ 13.

VBA Starting v5-1.doc Page 7 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 1 — The basics

1.4.2 Compiling your code

Select Case prmCategory
Casels=1,2

Your code will be compiled to a certain Casalony e

extent as you type it, and errors will be il

reported as they occur. The relevant code is camtrne T Vistegory 5.8

highlighted in red font. See Fig 1.4.3. o T =

myUpdateFee = Ror 1\ Sz Be

Expected: IF or Select or Sub or Function or Property or Type or With or Enum or end of statement

End Function

Fig 1.4.3 Compilation error when typing code

Not all compilation errors are picked up this way, but you can compile all the code via the Debug
menu. See Fig 1.4.4.

nsert [Debug | Run Tools addIns window el
It is not essential that you do this, but if you don’t you will find that you get the | s SmeSmiseione | o
. . . . = = StepInto
compilation errors occurring when you attempt to run the code, as the code is |- —
also compiled at run-time. L= —
lor Traj "= Run To Cursar Ctrl+Fs
Class add vwatch. ., T
Try making deliberate errors in the code to see what compilation errors you e
. . . . uick Watch, .. iFe+ by 7.
get (this is a good learning exercise!). o S 1)
Clear All Breakpoints Ctrh-shift+Fa
» cal val
'S

CATETE=T,
curResult = prmFee * 1.05
Casels=3
curResult = prmFee * 1.075

Fig 1.4.4 Compile the code

1.4.3 Debugging your code

Before you use your new myUpdateFee function in its intended context, you need to test it. Access has a
very useful (and easy to use) Debug facility. Students are often reluctant to use Debuggers (perhaps
because they are yet something else to learn?) but Debuggers are an invaluable tool for every
programmer (especially if you hate programming!).

143.1 The Debug Toolbar

Zai Microsoft ¥isual Basic - Chelmer Leisure GS ¥5 - [Calculations (Code)] INETES
o Fle Edt Vew Insst Debug Run Tooks Addins Window Help compile -.8x
Ba-& fRed ooy ek HEE2 E s o
By 1w 5= = OEE& . .
[(General) =] [myupdateFee =l

= -
Option Compare Database =
&3 Chelmer Leisure for Trainer Option Explicit =
=5 Microsoft Access Class Obje!
8] Form_Farmi Public Function myUpdateF ee(prmFees As Currency, prmCal As Byte) As Currency
£ 23 Modules Rem function increases fees for categories 1 and 2 by 5%,

i Calculations Rem 3 by 7.5%
=) 4 by 100

Fig 1.4.5 The Debug Toolbar

You may not have this toolbar in your code window, but you can add it via View->Toolbars. It can be
customised just like any other toolbar via View->Toolbars->Customise.

To see a description of what each icon represents, go to VBA Help and type Debug Toolbar into the
answer wizard. Do this now. You may find it useful to print the page out for reference.

1.4.3.2 Using the Immediate Window

Click on the icon for the Immediate Window and note the sub window that opens at the bottom
of the code window. See Fig 1.4.6.

Type in the following code into this window and press enter:
?myUpdateFee(20,1)
VBA Starting v5-1.doc Page 8 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

This line means “run the function myUpdateFee with a fee value of £20 and category of 1”.
Note that you must have a ? at the start of the line; you will get a compilation error message if you
miss it off.

The function should return the value 21, which is a 5% increase on 20, as required. This value will be
shown on the next line in the debug window. See Fig 1.4.6.

Experiment and test the rest of the function, for all the categories. What if there is a category 7 in the
table? What will be calculated then? Try it and see. Is the answer correct? Can you suggest an
improvement to this function? See test 7 of the test plan below and see also Exercise 1.9.2. The table
in Fig 1.4.6 shows a possible test plan.

Testing Notes...

e ...you must try to test every path through the code. For this function, that means testing every
branch of the Case statement in order to test each of the current categories and fees.

e ...you also need to think of ‘what if conditions, such as ‘what if the category value passed to the
function was not in the expected range of 1-6?’ and test these conditions as well.

e ...if you make a change to your code then the function is different from before, however

apparently minor the change was. This means that you must repeat all tests again at the end, just
to check that earlier tests (done before the change) still work.

Test No Data Reason for test Expected result
Fee Category
1 25 1 26.25 (25 *1.05)
2 30 2 Check calculation for each expected 31.5 (30 *1.05)
3 10 3 category and fee. 10.75 (10 *1.075)
4 15 4 16.5 (15*1.1)
5 18 5 18 (no change)
6 20 6 20 (no change)
7 any 7 Category 7 does not exist in the Category | What do you think will
table. What will the function do? be the result?

ner Leisure GS ¥5 [break] - [Calcul:
& Fle Edt
Bae-2a 5 # ooy ek | HES I B wn

=0z = O E o B,
[1Generan =] [myupdateFee =l

Option Compare Database T
Option Explicit =

sert Debug Bun Took Adddns Window Help compille -8 x

€| Public Function myUpdateFee(pmFee As Currency, prmCategory As Byte) As Currency
Rerm function increases fees [prmFee = 20pks 1 and 2 by 5%,

Rem Tby7.6%
Rem 4 by 10%
Rem 5 and B unchanged

Dim curResult As Currency ‘local variable for intermediate result

Select Case prmCategory
Casels=1,2
curResult = prmFee * 1.05
Casels=3
curResult = prmFee * 1.076
Casels=4
curResult = prmFee * 1.1
Case Else *category &, B
curResult = prmFee
End Select

myUpdateFee = Round(curResult, 2)

T — | End Function
toj ions

fon Context
&5 prmFee] Currenc: y Caleulations myUpda

Expression [ane [Type -
Calculstions
prnFes)

|A

Fig 1.4.6 Testing code in the Debugger,
showing the Immediate Window (left), Locals Window (centre) and Watch Window (right)
and a simple test plan.

VBA Starting v5-1.doc Page 9 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics
1.4.3.3 Breakpoints, stepping into code, watching values

Correcting coding errors can be very frustrating, especially if all you have to go on is knowledge of
what went in and what came out. With the Debugger, you can step though code line by line, look at
the values in data items, and spot just where a fault is (and then work out what is wrong and correct
it). You will now try stepping through the code of your myuUpdateFee function and looking at data values.
Look at the code window of Fig 1.4.6.

e (o back to the code window, position the cursor on the function header and set a breakpoint. The
code line will be highlighted to denote that a breakpoint has been set. (Simply click again to unset
the breakpoint). Two ways to set a breakpoint are:

o Click on the Toggle Breakpoint button (on toolbar or via Debug menu).
o Click in the margin of the code line (where the coloured dot is).

¢ Go to the Immediate Window, retype ?myUpdateFee(20,1) and press enter. (Or you could just
position the cursor at the end of the existing line and press the enter key). You are now positioned
inside the code window whilst the code is running (the breakpoint line highlight has changed
colour). The execution of the code has stopped at the breakpoint, waiting for instructions from
you. (That is what a breakpoint is used for — a point to break execution).

e Move the cursor over the name for the field prmFee. A box will appear (look at Fig 1.4.6) showing
you the value in the field. You can use this facility at any time to check on values in data items.
Check the values in prmCategory, curResult and myUpdateFee.

o There is a Watch option that will keep values constantly in the Debug window for you to
check. Move the cursor to the required item, click on the Watch icon and choose to Add the
item chosen.

o There is a Locals Window that will show all local values for a procedure/function. Click on the
Locals icon.

o Click on the Step Into icon (on toolbar or on Debug menu). The cursor moves to the first
executable statement. Successive clicks on this icon will step you through the code and you can
see exactly what is happening and can see/watch the values in the variables. Close the window
when you want to stop, and say ‘yes’ to confirm. Remove the breakpoint (click on the Toggle

Breakpoint icon again).
o To see the effect of the Round function try testing ?myUpdateFee(25,3)

o Try experimenting with some of the other options provided in the Debugger. Note that you can set
as many breakpoints as you like. Step Out will execute until the next breakpoint and then stop.

|
Finally, note that a function or sub procedure declared as Private can only Compill errar:
be invoked from within the module within which it is declared. This also A

Sub or Function nok defined

means that the Debugger cannot find it. In this case you get the message
shown in Fig 1.4.7. You also get this error if you misspell a procedure
name.

Fig 1.4.7 Message when function cannot be found

1.5 Using a Function in Queries

! gzt Check Update Fees : Select Query = IDlil

Before using the function to :
update the values in the - Me

table, it might be useful to see catoqory No
what the new values are | Category Type
going to be. So, create a Sembarshe Foo

query (call it Check Update

Fees) to do this, as shown in

Flg 1 51 . Field: |Category No Category Type Membership Fee MNew Fee: mylipdateFee([Membership Fee],[Categary No)

Table: [Membership ©: [Membership Cat |[Membership Cati

Sort:

Show:

Criteria:
ard

4

Fig 1.5.1 Check Update Fees query, using myUpdateFee function

VBA Starting v5-1.doc Page 10 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

This query has the first three columns taken directly from the Membership Category table. The fourth
column is a calculated column called New Fee, where the function myUpdateFee is called, passing the
values from the [Membership Fee] and [Category No] columns for the row as arguments to the
function. The result of the function call is then put in the column when the query is run. See Fig 1.5.2.

Column name: call to myUpdateFee Function arguments to the function (comma-separated)

Y v & q
New Fee: myUpdateFee([Membership Fee],[Category NoJ)

Fig 1.5.2 function call in 4™ column of query
The general format of a function call is: FunctionName (arguments, comma-separated)

The function will thus calculate the appropriate new fee and return this value for the fourth column.
Running the query will give the dynaset as shown in Fig 1.5.3.

gz Check Update Fees : Select Query - |EI|E|

Categary Mo | Categary Type | lembership Fee | Mew Fee

id 1| Senior £25.00 £26.25
. 2 Senior Club £30.00 £31.50
. 3 Junior £10.00 £10.75
. 4 Junior Club £15.00 £16.50
[| 5 Concessionary £18.00 £18.00
- B Youth Club £20.00 £20.00
* £0.00

Record: 14 « || 1 v | ei]r#] of &

Fig 1.5.3 result of running the Check Update Fees query

If you wanted to step through the code and watch what happens for each row, simply set a breakpoint
as shown in section 1.4.3.3, then run the query. You will be positioned back in the code window and
can step through, look at data values, etc.

This query will not change the values in the Membership Category table, as it is just a select query.

In exactly the same way as above, the function myUpdateFee can be used in a query to update the
Membership Category table. Look at Fig 1.5.4. Here the ‘Update To:’ row is simply a call to
myUpdateFee as before: myUpdateFee([Membership Fee],[Category No])

g=! Run Update Fees : Update Query - |EI|1|
-
*®
Category No
Categary Type
Membership Fee
-
4 | | »

3=l El [Membership Fes| hd =
Table: [Membership Cateqor —
Update To: |myvlpdateFee{[Membership Fee],[Category Na])

Critetia:
-
4| | »

ars
Fig 1.5.4 Run Update Fees update query using myUpdateFee to change the table

You have now used (reused) your myUpdateFee function to calculate column values in both queries. If
you have a calculation that needs to be used from more than one place, it is good practice to use a
function or procedure so that the details of the calculation are only written in one place. This makes
development, testing and maintenance so much easier and reduces errors. After you have tested and

VBA Starting v5-1.doc Page 11 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

run this Update query, you will need to set the Membership Category table fees back to their original
values; see Fig 1.5.3.

1.6 Running a Query from a Command Button

In an application, users are normally limited to the facilities that the developer has provided. They do
not normally have access directly to the database, via the Access database window, and they
certainly do not normally have access to any code. So, if Chelmer Leisure Centre staff wanted to use
the two queries developed in the preceding section, we would need to do something to allow them to
do so. You will now add a command button to allow the user to request the Check Update Fees query.

Open the Membership Category form (see Unit 14 of McBride) in design mode. Extend the form footer
so that there is room for some buttons. Access has a Command Button wizard, so have a look at that
now:

e You will need to use the Toolbox, so click the icon (also available via the Tools menu) if it is not
displayed.

e Select the Control Wizards tool in the Toolbox, then click the Command Button tool. Move to the
form footer and click where you want the command button to be put.

¢ A Command Button Wizard box now pops up, asking you what you want next. Select
Miscellaneous from the ‘Categories’ list and note that the ‘Actions’ list has now changed. This,
conveniently, has Run Query so choose that, then click Next

¢ You will now see a list of all the queries in your Chelmer Leisure Database. Choose the Check
Update Fees query and click on Next.

e Choose Text rather than Picture, as this makes more sense in this context. Change the button
text to something more meaningful (such as Check Fee Changes) and click on Next.

e Give the button a more meaningful name than the default of Command99 (e.g. cmdCheckFees), and
then click on Finish.

If you make an error while creating the button, simply use the cancel or back buttons to correct things.
If you have finished but want to delete it, just ‘cut’ it out of the form. Note that when you delete (cut) a
button from the form, any generated code is not deleted. This can be very useful; see section 2.4.2.

=T
Categaory Mo Categony Type tembership Fee =

4l T [Serior [£25.00

| 2 |Seninl Club | £30.00

| 3 |Juni|:|l | £10.00

[4 Jurior Club £15.00

|] |Cnncessionary | £18.00

| £ |Ynuth Club | £20.00

*| [| £0.00

-

Record: H|{|| 1 >|H|HE||:|F6

Fig 1.6.1 New Command Button on Membership Category Form

That’s it. If you change to form view you will see your button on the form and if you click on it, you will
see the result of the query. See Fig 1.6.1.

VBA Starting v5-1.doc Page 12 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

VBA code has been used to run the query, but you haven’t written any yourself; the code has been
generated by the command button wizard. Open the Membership Category form in design view and
look at the code module. This should look like Fig 1.6.2.

4l Microsoft Yisual Basic - Chelmer Leisure GS ¥5 - [Form_Membership Category (Code = 10| x|
% File Edit Wiew Insert Debug Run Tools Add-Ins Window Help compile .8 X

Bla-B {BE2Rdé oo o ekd 8% 2| 2 nnco .
BEL o nom M F=(Et= 2 BB e B,

Project - Chelmer Leisure for Trd

Icnl(lCIIeckFees j ICIiclc j
B . . =
Option Compare Database =
-8 acwzmain (ACWZMAIN) « Option Explicit =
E@ Chelmer Leisure for Trail
=145 Micrasaft Access Class C Private Sub emdCheckFees_Click()
8 Farm_Form1 On Error GoTo Err_crdCheckFees_Click
-~ Form_Memberstip C.
(B3 Modules Dim stDochame As String
i Cilculations _ILI
‘ E stDocMame = "Check Update Fees"
Properties - cndCheckFees x| DaCmd.OpenCuery stDocMame, acMormal, acEdit

IcmdtheckFees CommandEutton = | Evit dChackF Click
Xi_cm BCKMEES ICK:

alphabetic | Cateqorized | Exit Sub

cmdCheckFees &
False
Cancel False
Caption Check Fee Chan

Err_cmdCheckFees_Click:
MegBox Err.Description
Resume Exit_cmdCheckFees_Click

ControlType 104 End Sub
Diefault False
Displayiwhen 1] =
Enabled Trug i

FventProcPrafic | rrodcherkFres LI EIE;ﬂ_I Lr
Fig 1.6.2 Check Fee Changes command button click event code

Access has created code automatically for you in the form code module. The code is for a Click event
(when the user clicks with the mouse) on the cmdCheckFees object (the command button you have just
created). Set a breakpoint in the code then run the query again. When the breakpoint is reached,
execution will stop and you will be positioned in the code so that you can step through it, look at data
values, etc.

The code in Fig 1.6.2 is explained below. Use the F1 key to find out more.

Private Sub cmdCheckFees_Click()

e Procedure Header. Access has assumed that the procedure will not be used from any other code
module, so has declared the procedure to be Private.

e A procedure name has been generated made up of the command button name and the type of
event: ObjectName_Event

e The open and close round brackets () at the end of the procedure name mean that this procedure
has no parameters.

On Error GoTo Err_cmdCheckFees_Click

e Standard line generated by all/most wizard code. Calls the error-handling routine further down in
the procedure.

e One situation in which this would be used is if you renamed your query and forgot to change the
name of the query in this code.

Dim stDocName As String
o Definition of a string variable, which is used in the next statement. It is a local, private variable.
o Use of a variable is not essential, but is good practice as values in variables can be checked in
the Debugger.

stDocName = “Check Update Fees”

e Assignment statement to put the name of the query (as selected in the wizard dialog) into the
string variable.

¢ If you change your query name you must also remember to change this!

DoCmd.OpenQuery stDocName, acNormal, acEdit

e This statement runs the query.
e There are several DoCmd (Do Command) methods in Access; see Appendix J.

VBA Starting v5-1.doc Page 13 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Exit_cmdCheckFees_Click:
e This is a label not an instruction. Note the colon (:) at the end of the line.

Exit Sub
e This will terminate execution of the code by exiting the procedure.
e If this line was not here the code would ‘drop though’ to the code below it in this procedure.

Err_cmdCheckFees_Click:
e This is a label not an instruction. Note the colon (:) at the end of the line.
e Code here is only executed if a run-time error has occurred.

MsgBox Err.Description

e MsgBox is a built-in function to create a message dialog box. You will see how to use this in
section 1.7.

e The Err object contains the run-time error number and is used to access the appropriate
description to be displayed in the message.

Resume Exit_cmdCheckFees_Click
e Resumes execution after an error-handling routine is finished, and resumes at the label specified.

End Sub
e Procedure footer.

The query dynaset displayed to the user when the query is run is far from elegant. It’s fine for
developers when testing, or for users who have a database for their own private purposes, but may
not be suitable for a professional-looking application. A better way could be to create a form or report
based on the query, and then open that form or report to show the query results. The DoCmd method
OpenQuery is used (unsurprisingly) to open a query. The methods OpenForm and OpenReport are also
available; see Appendix J. Use the Help system to see how these work, and then change the
command button code to provide a more elegant display of the information. Or, if you look again at the
facilities provided by the Command Button Wizard, you will see that you can choose here to open a
form or report, so you could alternatively delete the command button (and its associated code) and
create a new one to perform the revised function, creating the form or report first, of course.

It could be useful to have an ‘Update Fees’ button on the form as well, but this would mean that the
user can change the table, and every time the button is clicked, the (new) table values will be updated
(again). If this facility is to be allowed, some security measures need to be in place as well. For
example, an ‘Are you sure?’ question in case the button is chosen by mistake. (Even better security
would be a method of restricting tasks such as this to certain authorised users only. A common way of
doing this is by having a log-in procedure with passwords and authorisation codes for all users). The
next section will show how to use questions and messages to provide some simple security for this
task. After that, you should be able to do exercise 1.9.3.

1.7 Creating & Using Message & Question Procedures

1.7.1 Sending a Message to the Screen

Open a new Access module, and enter and compile the procedure shown in Fig 1.7.1 below. Save the
module as ‘Messages and Questions’.

Public Sub myDisplaylnfoMessage()
' Display an information message to the user

MsgBox "Category Table updated OK", vbinformation
End Sub

Fig 1.7.1 Simple Information Message procedure

VBA Starting v5-1.doc Page 14 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Use F1 to find out more about the MsgBox function. Note the prompt boxes (and their contents) that
pop up to help you when you are typing the code. You will see that there are several types of default
buttons and combinations, also several different types of message.

In the code in Fig 1.7.1 MsgBox, although it is a function, is being used as a sub procedure, so no
round brackets are required.

Run the procedure in the Debugger by using the Immediate Window as shown in Fig 1.7.2. The
message box shown in this figure should then pop up. The information icon (the letter i) is generated
by use of the keyword vbinformation.

£ii Microsoft Yisual Basic - Chelmer Leis o |m] 3]
¥ File Edt Vew Insert Debug FRun Tools Add-Ins Window Help Type aquestionforhelp [+ o @ X

Bae-H {B2adéd oo, @ e SHE%2 0 .
By n m|M*=(Ec== | BB B ér T,

Project - Chelmer Leisure for Trad I(Geneml) j ImyDisplayhrfoMessage j
El . - -
E Option Compare Database =
E\@ Chelmer Leisure for Trainer COption Explicit I
@ Microsoft Access Class Obje
Farm_Forml Public Sub myDisplaylnfolMessage()
Form_Membership Cate: ‘Display an information message to the user
-5 Modules MsaBox "Category Table updated OK", whinformation
-4 Calrulations End Sub
. «§§ Messages and Question i
-
4 =g | ’
P Ei X
GEEOTES] Immediate S
[= [dispayinomessase A4

mydisplayinfomessage

PHieles ICatEgDriZEd I Microsoft Access x|
.
\l() Category Table updated OK

| o

Fig 1.7.2 simple message box test
The message box would look much more professional if the application name was displayed in place
of ‘Microsoft Access’ and would help to distinguish between messages generated by this application
and by Access. The procedure would be of much more use if it could be used to display any given
message. Amend the code in your ‘Messages and Questions’ module to look like the code shown in
Fig 1.7.3 below.

This code has a Public constant data item for the application name, declared as a global constant by
being at the head of the module. This can be referenced by other code as well, so the name will be
consistent wherever used (and, if it changes, it only needs to be changed in one place). It could
therefore be used for forms and reports as well (see section 2.2.1).

Option Compare Database
Option Explicit
Constant available __{,

Public Const myconChelmerName = "Chelmer Leisure Centre"
for use by any code

Public Sub myDisplaylnfoMessage (prmMessage As String) «———parameter

please ' Display an information message to the user

acknowledge — > (This procedure originates from DML_J VBA Trainer) | application
. MsgBox prmMessage, vbinformation, myconCheImerName4

all code from this End Sub name

document

Public Sub TestDisplaylnfoMessage()
myDisplaylnfoMessage "Category Table Updated OK"
End Sub

Fig 1.7.3 Better Information Message Procedure

myDisplaylnfoMessage NOW has a parameter prmMessage, with a String datatype, which must be passed to it
by the calling code. The parameter is referred to by name within the procedure, but maps to the value
passed to it at run time. By default, parameters are passed by reference (keyword ByRef); this means

that the procedure is passed the address of the parameter so can reference it directly (and change it if
needed). If you want to prevent accidental changes to data passed to a procedure then call it by value

VBA Starting v5-1.doc Page 15 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

(keyword ByVval) in the procedure declaration (myDisplaylnfoMessage (ByVal prmMessage As String)), but VBA
Help states that this method is not so efficient as ByRef.

The MsgBox line now uses the parameter value in place of the literal value used originally. Note that
there is also an extra item on this line, being the constant for the application name.

If you try running myDisplaylnfoMessage via the Debug Immediate Window, you will need also to specify
the message as a parameter. Alternatively, use a test procedure, such as the TestDisplayinfoMessage
procedure. This procedure simply calls myDisplayinfoMessage and passes the required message as a
parameter. Simple! Try running the test procedure via the Debug Immediate Window and note that it
not only displays the required message but that it also shows the application name in the dialog box
header. You now have a useful general-purpose procedure to display messages in this application.

You could extend this procedure to display the module code, form name or process name as well as
the application name, by using another parameter as shown in Fig 1.7.4. This little change introduces
several useful concepts:
e Optional parameter. The user can miss this off the procedure call if wished.
0 You can specify a default value to be used if wished:
Optional prmSource As Variant = “default”
this example simply uses the (rather unimaginative) string ‘default’ as the default value if the
parameter is omitted.
o0 The parameter must be of a Variant datatype. Check help for further information on this
datatype. Note that textboxes on forms and reports are automatically Variant datatypes.
e IsMissing function. This is one of Access’s many built-in functions, and returns a Boolean
(True/False) value to indicate whether or not the parameter is missing.
o If a default has been set then IsMissing returns False.
e If/Else/End If. An example of how to code using If.
e Concatenation using &. The & (ampersand) character is used to concatenate (join) elements in
a string. Here it has been used to join the Chelmer Name and Source strings for the MsgBox title
and to put a colon (:) character between them.

You should now be able to do exercise 1.9.1.

Option Compare Database
Option Explicit

Public Const myconChelmerName = "Chelmer Leisure Centre"

Public Sub myDisplaylnfoMessage(prmMessage As String, Optional prmSource As Variant)
' Display an information message to the user
' (This procedure originates from DMU VBA Trainer)
If IsMissing(prmSource) Then
MsgBox prmMessage, vbinformation, myconChelmerName
Else
MsgBox prmMessage, vbinformation, myconChelmerName & " : " & prmSource
End If
End Sub

Public Sub TestDisplaylnfoMessage1()
myDisplaylnfoMessage "Category Table Updated OK", "Update Fees"
End Sub

Public Sub TestDisplaylnfoMessage2()
myDisplaylnfoMessage "Category Table Updated OK"
End Sub

Chelmer Leisure Centre : x| Chelmer Leisure Cen x|

- -
\lj) Cateqgory Table Updated Ok \13) Zategory Table Updated Ok

Fig 1.7.4 message boxes with Chelmer Leisure name and optional source of message

VBA Starting v5-1.doc Page 16 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics
1.7.2 Asking a Question

Applications frequently need to ask the user a question and then take different actions depending
upon the answer. Open your Messages and Questions code module, and add the code shown in Fig
1.7.5.

The function myYesNoQuestion in Fig 1.7.5 asks a given question of the user and presents the user with
two buttons by which to reply; the Yes button and the No button. Use VBA Help to check the
meanings of the various new keywords in this module that you have not seen before, such as
vbQuestion, vbYesNo. Note that you can use the + operator to specify more than one of these options.
(The full list of options can be seen with the Help for the MsgBox function). The reply from the user is
assigned to the function name, so that this is the value returned by the function.

The test function simply looks to see if the value returned is Yes or No, and uses the existing sub
procedure myDisplayinfoMessage to display which value was returned. Note that, as the function is now
checking the value returned, round brackets must be used around the parameter values. Compare
with the code in Figs 1.7.1 and 1.7.3 for sub procedures.

Now test this via the Debugger and check that the function displays the question appropriately and
returns the correct reply. See Fig 1.7.6.

If you wished, you could extend the code to add the source of the message, following the code
already demonstrated in Fig 1.7.4.

Public Function myYesNoQuestion(prmQuestion As String) As Byte

' function takes a given question, displays it in a question box to the user
' with Yes and No buttons, then returns the yes or no value of the user's reply
* (This procedure originates from DMU VBA Trainer)

myYesNoQuestion = MsgBox(prmQuestion, vbQuestion + vbYesNo, myconChelmerName)

End Function
Public Sub TestYesNoQuestion()
If myYesNoQuestion("are you sure?") = vbYes Then
myDisplaylnfoMessage "yes"
Else
myDisplaylnfoMessage "no"
End If
End Sub

Fig 1.7.5 Function to ask a simple question

Chelmer Leisure C =] Chelmer Leisure x|

“_?r} are wou sure? \lj) WES

Fig 1.7.6 Running the test for the myYesNoQuestion procedure

1.7.3 Getting a value from the screen

As well as the MsgBox function used in section 1.7.1, Access has an InputBox function to allow you to
display a simple dialog box on the screen and ask the user to enter a value.

Add the procedures in Fig 1.7.7 to your Messages and Questions code module and test them using

the Debugger to see what happens. The ‘0’ (the last argument in the procedure call) is a default value
in case the user decides not to enter one; using a default is optional. Other examples of use of InputBox
are in section 7.3.2 and Appendix H.5 and H.7.

VBA Starting v5-1.doc Page 17 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Public Function myGetValue()
myGetValue = InputBox("Please enter a number", myconChelmerName, 0)
End Function

Public Sub TestGetValue()
myDisplaylnfoMessage (myGetValue)
End Sub

Fig 1.7.7 simple procedure to demonstrate use of Access InputBox command

1.8 Documenting your Code

As well as documenting your system design, table layouts, test plan and log, form and report layouts,
and the like, you should also document your code. There are several methods that you can use to
print your code, but none of them will show the useful lines that separate each procedure on the code
window, which is a shame. An option is for you to code a comment at the start of each of your
procedures, which is simply a dividing line, such as

(see fig 1.7.7)

Module code can be printed in several ways, three of which are:

e Open the code module and click on the print icon on the main Access toolbar. This method does
not provide headers or footers with essential details such as the module name, date printed, page
numbers, etc. The method may be adequate for your own development purposes, but not for any
final documentation.

e Print via the Access Documenter facilities. This is a reasonable format, with all useful information
in the page header plus code line numbers.

o Use Microsoft copy and paste procedures to put into a Word file, and add your own headers and
footers. This method is useful if you wanted to incorporate the code in a larger document. But be
careful, as some lines can get truncated. And you have to do it all again if you make changes to
your code.

Unfortunately, the different font colour for comments (shown in the VB code window) does not transfer
to the printer nor to Word files, but you can edit the Word file yourself to show this. Or you could paste
lots of code screen prints into a Word file; this will be fiddly, but will show font colours and dividing
lines.

So far, you have only created code in three modules, so it should be fairly easy to remember what
exists, where it is coded and what it does. But, as your application gets more complex, the number of
code modules and procedures will get much larger and more difficult to keep track of. And if that is
difficult for you as the developer, just think how much more difficult it will be for future maintenance
programmers. Below are two suggestions for documenting code modules and the procedures and
functions within them.

1.8.1 Using a standard form

Look at the form shown in Appendix D. This form simply shows a summary of all code in a module. It
would be useful if all code for a form or report object was listed together. For further information, a
programmer would look at the code and the comments in that code. Appendix D also shows samples
of completed forms for the three code modules you have created so far.

1.8.2 Using a database

Create a table for each code module, with columns corresponding to those shown on the form in
Appendix D. These tables could be part of the Chelmer Leisure database, or (perhaps better) kept in
a separate documentation database. Queries and reports can then be written to list the tables, sorting
in object or procedure name order. This method, though requiring a little more work initially, has the
advantage that information can be altered and reprinted as changes to the Chelmer Leisure database
are made. It also has the advantage that a UNION SELECT query (and possibly a report) can be used

VBA Starting v5-1.doc Page 18 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

to list all procedures together, sorted by module, which could prove a useful overall reference. SQL for
this UNION query for tables for the three code modules (for form ‘Membership Category’, and the two
Access standard modules ‘Messages and Questions’ and ‘Calculations’) so far would be:

SELECT Object, Type, Event, Name, Public, Description, “Membership Category Form” AS Module

FROM [Membership Category Fggm]
UNION

SELECT Object, Type, Event, Name
FROM Calculations

UNION

SELECT Object, Type, Event, Na
FROM [Messages and Questions]

ORDER BY Name;

Public, Description, “Calculations” AS Module

Description, “Messages and Questions” AS Module
documentation database table names

See Figure 1.8.1 for the result of this query; the tables have been created to show some of the
procedures from this part of the Trainer. See also Appendix G.7.

Object Type Event Name Public Description Module
Test fee Command |Click cmdCheckFees_Click Runs query Check Update Fees |[Membership
changes |button to see result of applying the Category Form
button changes
Make fees |Command |Click cmdUpdateFees_Click Runs query Run Update Fees to [Membership
changes |button update the fee values in the Category Form
button table.

N/A N/A N/A myDisplaylnfoMessage |Yes Displays a given message, Messages and
showing app name and info Questions
icon.

N/A N/A N/A myUpdateFee Yes Calculates the new fees Calculations

N/A N/A N/A myYesNoQuestion Yes Asks a given question, with reply Messages and
OK or Cancel. Shows app name |Questions
and info icon.

N/A N/A N/A TestDisplayMessage Tests myDisplaylnfoMessage Messages and

Questions

N/A N/A N/A TestYesNoQuestion Tests myYesNoQuestion Messages and

Questions

1.9 Exercises

Fig 1.8.1 Result of UNION query to list procedures

1.9.1 myDisplayWarningMessage sub procedure

Use the example set in section 1.7.1 to create a new sub procedure called myDisplayWarningMessage to
display a warning message. (Hint: vbExclamation will display an exclamation mark in the message dialog
box; look at VBA Help for MsgBox).

1.9.2 Improving the myUpdateFee Function
In Section 1.4.3.2 it was implied that the code for myUpdateFee could be improved. You now have the
tools to do this.

Suppose a new category (7) was added to the Membership Category table. The sub procedure

myUpdateFee has assumed that the only categories are 1-6, and Else has been coded to cover

categories 5 and 6. Your task is now to improve the coding to specify all known codes explicitly and to

use Else to cover any unexpected codes. A suggestion is that you code the following within Else:
myDisplayWarningMessage “Unexpected Code — “ & prmCategory & “ — Fee is unchanged”

The & sign will concatenate (join) the message text with the value in the prmCategory parameter to form

the full message. You should have created the procedure myDisplayWarningMessage in exercise 1.9.1.

VBA Starting v5-1.doc Page 19 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 1 — The basics

Now, if the Membership Category table contains an unexpected code, a warning message will display
to alert the user to a problem. It is always good practice to try to anticipate future changes and to trap
exceptions. It is also good practice to use Else in a Case statement as a ‘catch-all’ and to test
explicitly for all other conditions.

Add a new record to the Membership Category table and test your code by running the Check Update
Fees query. Don’t forget to delete the new record afterwards.

1.9.3 Running an Update Query

You should now have enough expertise to go back to the problem mentioned at the end of Section 1.6
of adding a command button to the Membership Category form to run the Run Update Fees query. You
now have all the tools that you need to do this by yourself. Do the following:
e Add a command button to run the query (refer to section 1.6 if you can’t remember how to do
this). Your form will now have two command buttons. See Fig 1.9.2.
o Edit the code that Access has generated for this as follows (see Fig 1.9.1 for the logic):
0 ask a suitable ‘Are you sure?’ question first (see Section 1.7.2)
run the Do Update Fees query, or not, depending upon the user reply
display a message to the user to say whether or not the table was updated
repaint the form to show the new values (see section 1.1.3)
disable the run query button so that the user cannot hit it twice (see section 1.1.3). You will
need to move the cursor away from the button first.
Run (and debug if necessary) your code for the button on the form, testing both answers to
the ‘Are you sure’ question.

[e N el elNe)

(@)

(Normal text shows Access-generated items, bold Italics show your own added code)

IF answer to "Are you sure" question = Yes then
set query name
run the query
display message "Fees Updated OK"
redisplay (Repaint) form to show updated values
move cursor (use SetFocus) away from run update fees update button
grey out (use Enabled property) the run update fees button

Else
display message "Fees Update Cancelled"
End If
Fig 1.9.1 Logic for Run Update Fees command button code
SI=k
Category Mo Category Type tembership Fee *
4l T [Serior [£26.25
ﬂ
| 2 |Seni0r Club | £31.50
\._?/ Are You sure you wish to update the fees? I 3 |Juni0r I 10.75
| 4 |Juni0r Club | £16.50
fes I Mo I =
| 5} |E0ncessmnary | £18.00
| 3 |Youth Club | £20.00
* [[£0.00
Fig 1.9.2 The form after updating the fees,
Check Fee Changes | pdate Fees

showing
the Update Fees button greyed out (disabled)
and the new values on the form

Record: ll;” T XN 3

VBA Starting v5-1.doc Page 20 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

PART 2

USING EVENT CODE ON FORMS — DATA MAINTENANCE

REVIEW OF PART 2:

In this part of the Trainer you will see...

e ...that a form header can be set up from a constant in an Access module.

e ...that the form AllowEdits property can be used to allow the user to change data, or not. It is set to
true by default. To alter to View mode, set the AllowEdits form property to False.

o ...thatthe Form_Load event is used to specify what you want to happen when the form is first
loaded.

...that the Form_Current event is used to specify what you want to happen for each record shown.
...that form, report and object default properties set by Access can be amended via the property
box and/or via VBA code.

e ...some methods of showing which command button/process the user has chosen.

e ...that VBA has built-in colour constants, or you can use the RGB Function to create your own
custom colours.

o ...that generated (or your own) code for an object will remain in the code module even though the

object has been deleted, and you can use this to link to other objects or as a procedure to be
called from elsewhere.

o ...that event code can be used to perform automatic calculations. If the results of the calculations
are for information only, they can be displayed in an unbound control.

e ...that the Form_BeforeUpdate event is called before data is saved and can be used to trap unsaved
changes to data.

o ...that the Form_AfterUpdate event is used when data has been updated and can be used for
completion processes such as displaying a confirmation message to the user.

e ...that the on Error clause within an event can be used to trap specific errors and take appropriate
action. For more details see the "Further VBA" Trainer.

e ...that wizard code for deleting records has its own ‘Are you sure?’ procedure, but this can be

disabled via the Tools menu.
...how to split a message over two lines in a dialog box.
...and how to split a code statement over two lines.

See Appendix A for a summary of events that occur for Access objects.
See Appendices B, C and F for some help and advice when coding.
See Appendix E for some suggestions for naming conventions for variables, procedures, etc

2.1 Introduction

In this part of the document, you will see how to create code to customise and improve on the basic
data maintenance facilities supplied by MS Access. You will be using the Membership form that you
created in Units 14, 15 and 22 of McBride. Your basic form will look something like that shown in Fig
2.1.1. There are some differences here to the form shown in Unit 14 of the book:

The sub heading is now ‘Membership Details’ as this form will be used here for more than just

recording the details of new members.

o0 The default control for Smoker is a text box but the user has to type Yes or No (and will see -1
or 0 when the cursor is in the box!). This is not good HCI, so it has been changed to a check
box as discussed in McBride Unit 22 Task 4.

The default control for Sex is also a textbox, and makes even less sense than for the Smoker

field. So | have changed it to use an option group (see McBride Unit 22 task 3)

o0 Setting -1 [Yes] for Male and 0 [No] for Female when prompted by the wizard.

o The group is called ‘Sex’ and is still of a Yes/No datatype and is bound to the Sex field in the
Membership table.

Membership No is an AutoNumber field, so properties (in the property box) have been set to

make it locked (so that the user cannot type into it), and to make it look unlike a data entry field. It

has been moved to the top of the form.

This Part of the Trainer places all command buttons directly on the Membership form. Part 4 shows
an alternative method using main and sub menus.

VBA Starting v5-1.doc Page 21 Version 5.1 — July 2005

VBA Trainer - Getting Started

Chelmer Leisure and Recreation Centre
Membership Details

Part 2 — Using event code on forms — data maintenance

o =[]

v

tembership Mo I:I
Title: m— Firstnarme |AndrewJ Lastname IWaIker
Street Im Occupation IB uilder
Town [Cremer Date of Bith [12/03/1952
County IW Categomy No |_2
Post Code IW
Telephone Mo Im Sex
& Mals

Sporting Interests smoker ¥ |7(" Female
Tennis, Squazh

Drate of Joining lm

Date of Renewal I 03/02/1937

Record: I1| 1 || 1k |>I|He| of 20

Fig 2.1.1 The Membership Details Form

A database normally exists because of a need to process certain information. In order to provide the
required processing function, the data has to be entered and then maintained. In order to do this, you
will normally need to provide facilities to view, edit, insert and delete data, plus other specific functions
needed for the database. The rest of this section will show how VBA can be used to improve on the
basic Access facilities, to assist the data entry and maintenance processes. Fig 2.1.2 shows a simple
test plan for Part 2, covering the main tests (not an exhaustive plan). Do the tests as you go along,
and repeat all tests again at the end after all changes have been made.

Test No | Reason for test Expected result

1 Default settings when form opens (sections | Form is in View mode, View button is active, Form
2.2.1,2.23,24). header is correct, cannot enter/change data.
After section 2.6.1. Form will be in new record mode, with Edit active.

2 Default settings when move to Form is in View mode, View is active, cursor in
next/previous record (sections 2.2.3, 2.4). Title field, cannot enter/change data.

3 Working of Edit and View buttons (sections | Click on Edit button, Edit button is active, can edit
2.3,24). data.
Also click on Edit button then repeat test 2. | Click on View button, View button is active, cannot

edit data.

4 Choose Edit mode, change a field on a Get own ‘Save changes’ message.
record, and click Save button. Choose not | Reply of No does not alter record (plus own
to save changes. conformation message if coded).
(section 2.5)

5 Choose Edit mode, change a field on a Get own ‘Save changes’ message.
record, and click Save button. Choose to Reply of Yes changes record, with confirmation
save changes (section 2.5). message.

6 Choose View mode and click on Save Get own ‘Cannot save unless in Edit mode’
button (section 2.5). message.

7 Redo tests 4 and 5, but move to new As for tests 4 and 5.
record instead of clicking Save button. The unsaved changes are trapped.

8 Add a new record — test both saving and New record automatically in Edit mode.
not saving. (section 2.6.1) Can choose to save or not, and will get

appropriate own messages.

9 Delete a record — test both deleting and Can choose to delete or not, and will get
not deleting (section 2.6.2). appropriate own messages.

10 Experiment with various combinations of Active button shows appropriately, get correct

button clicks, saving or not etc. (all
sections)

own messages and correct actions.

VBA Starting v5-1.doc

Fig 2.1.2 Simple test plan for Part 2.

Page 22

Version 5.1 — July 2005

VBA Trainer - Getting Started

2.2 Viewing Data

Part 2 — Using event code on forms — data maintenance

Open the Membership form in form view. Note that the first record in the table is displayed. (See
Section 2.6.1 for how to display a blank record). Change data in a field. Close the form and reopen it.
The new data is now in the field, but you were not informed that anything had been changed. It is very
easy to change data inadvertently when you are browsing through the records.

2.2.1 Setting a form default

The Form Load event is used for coding all the things that you wish to happen when the form is first
loaded. VBA Help: “By running an event procedure when a form’s Load event occurs, you can specify

default settings for controls, or display calculated

data that depends on the data in the form’s records.”

There is also a Form Open event; look at VBA Help for more information.

&7 Form

Change to design view, and look at the
properties for the form. Click the Data tab.
Note that the AllowEdits property is set to Yes
by default. It is a simple matter to set it to No

via the property box, but it is more flexible to
set it via VBA code, as sometimes you will

want it to be Yes and at other times to be No.

So, we will start by setting it every time the

form is opened.

IForm

=zl

[FIEF coooooooaoooonana
OrderBy . o
Allow Filkers . o000
Allow Edits ...
Allow Deletions
Allow Additions

DataEnkry oo v o000 Mo
Recordset Type . v 00 v u s Crvnaset
Record Locks . o0 Mo Locks

Fetch Defaults . 00000

X

JRI=TEY
Another useful task that could be done in the Form R S R T R T R S R R
Load event is to set up the main heading on the LR -
form. At present, you have probably done this by ‘ ‘ heading | : 1
typing the text directly into a label in form design o | CTOPIEnp BEEE] |
view, but it is very simple to use the text already in - | Merbbstip 1 [Ferer] []] ‘ [T T]
your public constant myconChelmerName (see Fig L e T
1.7.3). Give the name IbiHeading to the label and S =l
note that the caption property contains the text that B Fg;:;;nl‘ oo | et | ot | ai]
you typed in. In the example shown in Fig 2.2.2 the : 15::1 _ HE e
text has been changed to ‘heading’. | TEBmeTe 75 e s

Left..... 0.847cm
;| Loogimeeys | L s

To refer to the property you code
IbIHeading.Caption

(See section 1.1.3)

Fig 2.2.1 Form property box, Data tab

. 0.7E7cm
Back Style . .. Transparent
Back Color oo 2147483633
Special EFfect Flat

Border Style . 0o Transparent
Border Colaro a

2|/ |5porting Interests

Kl —

Height

d]|

Fig 2.2.2 Label property box showing caption property

Now open the Membership form code module and select Form from the top left-hand box. This will
generate the header and footer for the Form_Load event code. (Alternatively, choose the Form_Load
event from the form’s property box event tab, click on the build icon (...) and choose Code Builder

[see Fig 1.2.4]). Change the code so that it looks

like that in Fig 2.2.3.

Private Sub Form_Load()

AllowEdits = False

End Sub

IbIHeading.Caption = myconChelmerName 'set main heading

'set the form to view mode

Fig 2.2.3 code for Form Load event

You could also code Me.AllowEdits = False

VBA Starting v5-1.doc

Page 23

Me is taken to be the current form. See section 1.1.3.

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

Now open your form in view mode and try to alter some data; anything that you type into a field will
simply have no effect.

Look at the heading; this should now contain the text in myconChelmerName. You can change the text in
the constant and the change will be reflected in the heading and in your message and question
procedures that use the constant for the title. This way you can get a consistent title throughout your
application and you only need to change it in one place.

You could also put the text in the form caption (the blue line at the top of the form) by coding
Caption = myconChelmerName Or me.Caption = myconChelmerName

2.2.2 Using a View Command Button

The user will need to inform the database what he or she wishes to do. One way of doing this is by
using command buttons. Do the following to create a View button:

e Open your form in design mode and extend it to the right hand side or use the footer. (Buttons can
be added anywhere on a form).

e The Command Button Wizard does not have a wizard for ‘View’ so turn the Toolbox Wizards off
(click on the toolbox wizard icon) and create a command button on your form. This will have a
default name such as Command27, so open the property box, click the All tab and change the name
and the caption to something more meaningful (e.g. emdview and View). Note that the name is the
object name that you will refer to in your code and the caption is the wording that appears on the
button on the form. They do not have to be the same.

¢ Now you need to create the coding behind the button. Open the code module and select cmdview
from the left-hand list of objects; Access has assumed that you wish to create code for a Click
event for cmdview and creates the code header and footer for you. Copy and paste the line to set
the AllowEdits property as shown in Fig 2.2.3.

e Open the form in form view. As before, you cannot enter data. Click on the View button, move the
cursor to a field and you still cannot change data.

o But try commenting-out the line in the Form_Load event then trying this procedure out again,
and see the effect of the code in the View button. This time you will be able to change data
even after pressing the button! It is important to note that the AllowEdits property applies only to
unsaved changes; so if you make a change to the data and then click on the View button you
can continue to make changes until the record has been saved.

2.2.3 Setting a default for each new record

There is one more situation in which you may wish to reset defaults, this being whenever the user
changes to a new record. For this you need to use the Form_Current event; VBA Help: “The Current
event occurs when the focus moves to a record, making it the current record, or when the form is
refreshed or requeried.” The event is also called automatically whenever a form is loaded; so setting
the AllowEdits property in the Form_Load event is not strictly necessary. Use the Form_Current event to
code anything that you wish to happen when you move to a new record.

Do the following:

o Open the form’s property box and click on code builder for the Form_Current event. This will create a
header and footer for a procedure that will be executed every time the user chooses a new
current record.

e Copy and paste the line to set the AllowEdits property to this new procedure.

e You may have noticed that when the form is opened, or when you move to a new record, the
cursor is positioned in the Membership No field. You could prevent this by changing the field tab

order, but you can also do it by coding
Title.SetFocus ‘ position cursor to first field

Do this now in the Form_Current event.

VBA Starting v5-1.doc Page 24 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance
2.2.4 Using acommon procedure

You have now set defaults to view mode in three situations, and have been guided to use ‘copy and
paste’ to create the code. Duplicating code is bad practice. Further buttons will be added to the form
for more maintenance functions, and there may be more defaults to be reset. Do the following:

e Create a new private procedure mySetToViewMode in the form code module
e Code (or copy and paste) the line to set to view mode into this new procedure

e Change the Form_Load, cmdView_Click and Form_Current events by deleting the line to set to view
mode and replacing it by a call to mySetToViewMode. See example in Fig 2.2.4.

Private Sub cmdView_Click()
mySetToViewMode 'activate view mode
End Sub

Private Sub mySetToViewMode()
AllowEdits = False 'set the form to view mode
End Sub

Fig 2.2.4 Use of new procedure to set to view mode

2.3 Editing data

Now add a new command button to your membership form:

o There is no wizard to create an Edit button, so create one without the wizard (as for your View
button).

e Create a Click event for the Edit button. You should be able to work out that the code to allow
edits would be: AllowEdits = True ‘allow user to edit data so enter and save this code.

e Open the form in form view. You cannot enter data as the Form_Current event (section 2.2.3) has
set the default to view only. Click on the Edit button, move the cursor to the desired field and you
can now change data.

e Try clicking on the Edit button, then moving to a new record. Try editing the new record. You will
not be able to, as the Form_Current event procedure has set the default back to view only for the
new record (and has also positioned the cursor to the Title field).

¢ In a similar manner, you could create buttons to perform frequently required actions such as
‘change address’ and ‘renew membership’, moving the cursor to the appropriate field.

2.4 Showing which is the active button

It would be useful to provide the user with some feedback that the click has been actioned and which
button is currently active. Unfortunately, there is not an automatic raised/sunken facility with command
buttons, so the rest of this section will show you how to indicate which button is active. There are
three possible methods shown here, which also demonstrate various VBA code elements and
techniques.

2.4.1 By changing text colour on command buttons

Open the property box for the Edit button, choose the format tab and you will see that there is a
ForeColor property. This shows the default colour for the text on the button. This property can be
changed using VBA code.

There are currently two buttons on the form, View and Edit. We need to code for the following:

¢ View is the default mode for the form and for each new record
o Set initial forecolor on View button to black
o Set initial forecolor on Edit button to white

o Editis invoked only when the user clicks on the Edit button.
o Do the reverse of the colours above.

VBA Starting v5-1.doc Page 25 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

First open one of your Access modules and add the following two lines to create constants:
Public Const myconButtonActive = vbBlack
Public Const myconButtonlnactive = vbWhite

These constants are defined here as Public so that they can also be used by other form code.

The colour constants vbBlack and vbWhite are built-in to VBA. Look them up in VBA Help; you will see
that there is a list of colour constants that you can use. If you want to define a value for a different
colour you can use the RGB Function (look it up in VBA Help). E.g. to define a colour purple do:
Public myPurple As Long code at the start of an Access code module; global public variable
myPurple = RGB(120, 0, 255) code in Form_Load, possibly for a menu when system starts up
Then whenever you want to set something to the colour purple you can use your public variable.
Note that you cannot set a constant to the result of a function; you must define a variable and then set
the value in the variable.

Next change your code module for the Membership form so that it looks like that in Figure 2.4.1.

Option Compare Database
Option Explicit

Private Sub cmdEdit_Click()

AllowEdits = True ‘allow user to edit data

myResetButtonsToOff ' clear all button text

cmdEdit.ForeColor = myconButtonActive ' show edit button as activated
End Sub

Private Sub cmdView_Click()
mySetToViewMode 'set the form to view mode
End Sub

Private Sub Form_Current()

‘default settings when user moves to a new record
mySetToViewMode 'set the form to view mode
Title.SetFocus ' position cursor to first field

End Sub

Private Sub Form_Load()

mySetToViewMode 'set the form to view mode
IbIHeading.Caption = myconChelmerName 'set main heading
End Sub

Private Sub mySetToViewMode()

myResetButtonsToOff 'reset button text colours

AllowEdits = False 'set the form to view mode

cmdView.ForeColor = myconButtonActive ' show view button as activated
End Sub

Private Sub myResetButtonsToOff()

' set forecolor to inactive for all buttons

' IMPORTANT - add appropriate line(s) here for each new button added
cmdEdit.ForeColor = myconButtonlnactive
cmdView.ForeColor = myconButtonlnactive

End Sub

Fig 2.4.1 Membership form code so far, showing colour change for Edit & View buttons

There are several things to notice about this code:

o There is a new private procedure myResetButtonsToOff. Anticipating that other buttons may be added
to the form, this new procedure sets ForeColor text on all (known) buttons to white. A little extra
work and planning at the start to choose reusable procedures can save a lot of time later.

o This procedure uses the constant myconButtonlnactive to set the ForeColor for each button to
white.

o If you wished to use a different colour you simply change the value that is defined with your
constant. This is much better than using the colour constant vbwhite in several places; it
makes maintenance much easier, and makes coding more consistent.

e This new procedure is called from the cmdView_Click and cmdEdit_Click procedures, to set the button
text ForeColor to the default (white) on all known buttons.

VBA Starting v5-1.doc Page 26 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

Open your Membership form and see that the View button has black text and the Edit button has
white text. Click on the Edit button and watch what happens. Move to a new record and see that the
View button is now active. See Fig 2.4.2. Put a breakpoint in the Form_Load event and use the
Debugger to step through code.

The colours black and white have been used here as this document is printed in black and white. You
should be able to work out how to use different colours if you wanted.

-loix|

Chelmer Leisure and Recreation Centre

Membership Details

temberzhip Mo View
Title: I-m— Firsthame |Denise Lastname IW —I
[Ea
Street Im Occupation |H0usewife
Tawn IW Date of Birth Im
Cournty IW Category Mo I_‘I
Post Code IW
Telephone Mo W Sex
 Male
Sparting Interests smoker I & Female
Aerobics, swimming, mnning, squash
Date of Jaoining Im
Date of Renewal Im

Record: |1| 4 || e |>| |He| of 20

Fig 2.4.2 the membership form with the first two command buttons showing text colours, view mode

2.4.2 By using labels to simulate raised/sunken buttons

The standard Command Buttons provided by Access have some drawbacks:
o The only back colour allowed is ‘grey’, as there is no BackColor property.

o The only special effect allowed is ‘raised’, as there is no BackStyle property
These defaults cannot be changed (the relevant properties are not available).

You can simulate command buttons by using labels. Fig 2.4.3 shows the Membership form with these
‘label-buttons’. (You cannot use pictures on labels, but you can change the SpecialEffect, BackStyle and
BackColor properties. You can simulate pictures by placing a label over a picture and putting the label
BackStyle to Transparent, so that the picture shows through).

=
Chelmer Leisure and Recreation Centre
Membership Details

Membership N 2 |
embership Mo - View
Title: IGE Firsthame |Denise Lastname ICartwrlght
I Edit
Street |2? B owling Green Rd Occupation |H0usewife
Town |Meriton Date of Bitth | 23111360
County IEheshire Categary Mo |_1
Post Code ICHS 2EY
Telephane Mo |D1 T RR2099 Sex
© Male
-
Sporting Interests SHCtE % Female
Aerobice, swimming, mnning, sguazh
D ate of Jaoining I 16407139
[Drate of Renswal 1B/07 /1996

record: 1| [2 v |»1r#] of 20
Fig 2.4.3 Membership Form with labels as buttons, Edit mode

VBA Starting v5-1.doc Page 27 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

To take advantage of the code generated for command buttons, plus your own code so far, create a
copy of your Membership form (the code will be copied with it) and do the following to create your own
label-buttons:

step 1. Delete the View command button. The code for the cClick event will not be deleted.
step 2. Create a label to replace the command button.

e On the Format tab, change the Caption to ‘View'.

e On the Other tab, change the label name to cmdView.

e On the Event tab, create code for a click event. As your label name is the same as your
original command button name, the event procedure here will link to that originally created
for your (now deleted) command button of the same name.

e On the Format tab, change

Special Effect 10 Raised
Text Align to Center
The form here has also had Font Weight set to Bold.

o Use Format->Align/Size to match the View label-button alignments with that of your Edit
button.

e Look at the form in form view — the label looks just like a command button.

step 3. Follow the above steps for the Edit button. Look at the form in view mode and click on the
‘buttons’ and see that the text colour changes as before.

step 4. At the start of the Access code module add the following constant declarations:

Public Const myconSunken = 2 (See Help 2SpecialEffect)
Public Const myconRaised = 1
step 5. Use Edit2Replace to change: ForeColor to SpecialEffect,
myConButtonActive to myconSunken
myconButtonInactive to myconRaised

Now open your form in view mode again and see how the ‘buttons’ work. Note also that you have
made this change with minimal changes to the code, partly by making use of constant values.
However, for new label buttons you will need to use the wizards to create code for a command button,
then delete the button, then create the label button and link it to the wizard code, so this method is not
quite as straightforward as a simple use of command buttons.

2.4.3 By using labels to look like hyperlinks

You don’t have to use buttons on forms for the user to click on for certain actions. Labels also have
Click events so you can use labels instead.

Make another copy of your basic Membership form and do the following:

step 1. Add the following lines to your Access module:
Public Const myconLinkActive = vbBlue
Public Const myconLinklnactive = vbBlack

step 2. Delete the View and Edit buttons, but do not delete the code.

step 3. Create labels called IblView and IblEdit with View and Edit as text. Set the FontUnderline
property to Yes.

step 4. Use Edit->Replace in the Membership form code to change myconButton t0 myconLink. This
should change the code to use the new constants set in step 1.

step 5. Change the headers for cmdview_Click and cmdEdit_Click to IblView_Click and IblEdit_Click.
step 6. Using the property box (event tab) for each label, link to the Click event code.

step 7. Change the lines of code that set the ForeColor property to change it for the label not the
command button.

e Example, change cmdView.ForeColor = myconLinkActive tO IblView.ForeColor = myconLinkActive

Your form should now look like that in Fig 2.4.4.

Just as for the method in section 2.4.2 above, you will need to create wizard code for buttons, delete
the buttons, and then link the code to your labels. Alternatively, you can create buttons and put them
over the labels (create the label first then the button and move the button to the same position on the
form as the label), setting the button Transparent property to Yes. See Fig 2.4.5.

VBA Starting v5-1.doc Page 28 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 2 — Using event code on forms — data maintenance

B Membership with labels looking like hyperlinks

Chelmer Leisure and Recreation Centre

=101.x]

Membership Details

Title: Iﬂ

Membership Mo

Firstname IAndrew J

Lastname IWaIker

View

Sheet
Town

County
Paost Code

e

Telephone Ma |D1 777 BE9236

Sporting | nterests

rn
=
=

Tenriz, Squash

Decupation |B Lilder
Cate of Bith I 12/03/1952
Categomy Mo I 2
Sex
& Male
Smoker M
 Female
D ate of Joining I 03/021992
Date of Renewal I 03/02/1337

Record: |4| 4 || 1 » Ibl |>*| of 20

Fig 2.4.4 Membership form using labels to look like hyperlinks.

2.4.4 Some useful command button properties (these also apply to labels, textboxes etc)

The property box tabs use ‘Yes’ and ‘No’ for the settings. In VBA code, you must use True and False,

respectively.

Property Tab Setting | Result Example of use
Yes Button click is actioned Normal button use
Enabled Data
No Button is ‘greyed out’ and To show the button on the form,
click is not actioned. Cannot but prevent the user from using
give the focus to the button in | it (perhaps until a data value
VBA code has been validated). See
section 3.3.3.1.
Yes Button is shown on form User can see the button
Visible Format
No Button is not shown on form To hide the button to prevent
and click on area where it user from both seeing & using
should be is not actioned. it. See section 4.3.
Cannot give the focus to the
button in VBA code
Yes Button is not shown on form Buttons on a map or diagram —
Transparent | Format but click on area where it user clicks on features of map
should be is actioned if or diagram, but user does not
Enabled = Yes see the actual button. See
section 3.2.2.1.
No Button is shown on form User can see the button
Control Tip Other Enter Text shows up when cursor is | Help tips. See section 4.2.6.
text own positioned over the object. Useful also when combined
text with Transparent property on a
picture or diagram.

Fig 2.4.5 Some useful command button properties

The remaining sections in this document use the command button version of the Membership form
from 2.4.1. If you prefer to use one of the other versions, simply adapt the code as appropriate.

VBA Starting v5-1.doc

Page 29

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

2.5 Saving records

So far, when you have edited data, the changes are saved automatically. It would be far better to give
the user control over when, or even whether, to save data.

2.5.1 Using a Save Command Button

Add a new command button (cmdSave) with text (Save) in white. You can use the wizard to do this and
the wizard will create code to save the record under a click event for the button. Look at the code.

Add a line to your myResetButtonsToOff procedure to include the new cmdSave button.

Try the button out. If you have not changed to Edit mode x|
you will get an Access error message as shown in Fig

2.5.1, caused by the fact that you can’t save when in View
mode (but this fact is not very obvious from the message).

The command or action *SaveRecord' isn't available now,

Fig 2.5.1 Message when trying to Save when in View mode

Amend the wizard code for the Save button so that it looks like the code in Fig 2.5.2. The code in bold
will be your added code.

Private Sub cmdSave_Click()
On Error GoTo Err_cmdSave_Click

If AllowEdits Then ‘if AllowEdits is True

myResetButtonsToOff ' clear all button text
cmdSave.ForeColor = myconButtonActive ' show save button as activated

DoCmd.DoMenultem acFormBar, acRecordsMenu, acSaveRecord, , acMenuVer70
‘form BeforeUpdate event will be called from here automatically
'if save is OK, then the form AfterUpdate event is called

Else
myDisplayWarningMessage "Cannot save unless in Edit mode"

End If
mySetToViewMode 'set back to view after save — here for now — see section 2.5.3

Exit_cmdSave_Click:
Exit Sub

Err_cmdSave_Click:
MsgBox Err.Description
Resume Exit_cmdSave_Click

End Sub

Fig 2.5.2 Amended code for Save button

Note the following:

e This code checks the AllowEdits property to give a more meaningful custom message to the user if
View mode is set on. This is probably better than just doing nothing as it gives feedback to the
user.

e The code uses the myResetButtonsToOff procedure (reuse of code) which should now refer to the
Save button as well.

e Comments after the DoCmd statement to save the record refer to the BeforeUpdate and AfterUpdate
events for the form; these are explained below.

e The code ends by setting back to view mode (calling the private procedure within the module).

Your form will now look something like that shown in Fig 2.5.3 below. Clicking on the Save button will
save the record. How to display the ‘saved OK’ message is discussed in section 2.5.3.

VBA Starting v5-1.doc Page 30 Version 5.1 — July 2005

VBA Trainer - Getting Started

Chelmer Leisure and Recreation Centre
Membership Details

Part 2 — Using event code on forms — data maintenance

=101 %]

tembership Mo
Title: IMr Firstname IAndrewJ

Steet W
Tawn IW
County IW
Past Code IW

Lastname IWaIker

Occupation IBuiIder

Date of Birth I 12/0341952

Category Mo I 2

Telephone Mo ID‘I T77 BE9Z23E T Sex

x
Sporting Interests s
Tennis, Squash \l) Data for Andrew 1 Walker saved Ok

Record: 14| 4 [1 o |»i|p#]cf 20
Fig 2.5.3 Membership form using the Save button from Edit mode

2.5.2 Using the Form_BeforeUpdate event

Now try editing a record and then moving to a new record or closing the from without clicking on the
Save button. Your changes have been saved automatically, but you have not been informed that this
has happened. The same thing happens if you close the form after changing a record. You need to be
able to trap the fact that some data has been changed and alert the user. The event to do this is the
Form_BeforeUpdate event. VBA Help “The BeforeUpdate event occurs before changed data in a control
or record is updated”. (Look at the VBA Help system for full details).

Private Sub Form_BeforeUpdate(Cancel As Integer) <

‘catch MSAccess check when a record is changed
'this procedure is invoked if a change has been made to a record and the
' user is attempting to move to a new record or close a form

'it is also invoked by save_click, addnewrecord_click, etc.

' which gives a useful chance for the user to cancel if the button was
pressed in error

If myYesNoQuestion("Save Changes?") = vbNo Then

The Cancel parameter is
for you to tell Access
whether or not you want
to save the record. It is
initially set to False (by
Access) which means

Undo ‘undo changes .
Cancel = True ‘cancel save that the save is to g(.)
Else ahead. You can set it to
' Access will automatically save the record True if you want to
End If cancel the save.
End Sub

Fig 2.5.4 code for Form_BeforeUpdate event

Create an event procedure for the Form_BeforeUpdate event, as shown in Fig 2.5.4. This piece of code
simply asks the user whether or not he/she wishes to save changes. If the user replies ‘No’, then the
changes to the form are undone and the save is cancelled (see information above about the event
parameter Cancel. See also section 3.3.). Otherwise the changes are saved.

However, if the user replies ‘No’, the error procedure within the cmdSave_cClick event may be invoked.
Access will display a message informing you that the DoMenultem (i.e. the save) has been cancelled.
To disable this message, go to the cmdSave_Click procedure and change the error coding to read as
follows:
Err_cmdSave_Click: €¢—
If Err = 2501 Then
‘ignore DoMenultem cancelled message caused by cancelling changes in BeforeUpdate event
Else
MsgBox Err.Description
End If
Resume Exit_cmdSave_Click

note : (colon) at end of line indicating that this is a label, not code

(on Error is discussed in more detail in the “Further VBA” Trainer. You can put a breakpoint on the line
and see the value in the Err object and watch what happens).

You could also display a message to the user confirming that the save has been cancelled (you
should know how to do this by now, using your myDisplaylnfoMessage procedure).
VBA Starting v5-1.doc

Page 31 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

Now try adding a new record but leaving at least one mandatory field (Required = Yes in table definition)
empty (simply tab over it). If you click on the Save button, or try to move to another record, Access will
prompt you to enter a value in the field, and then you can try to save again. However, if you do this
again but click on the Close button, even if you say ‘Yes’ to saving changes, the form is then closed,
there is no error message and the record is not saved. It may therefore be best to disable the Close
button while Edit or New modes apply and enable it only after each Save or Cancel. | can’t find any
way of trapping this condition in code; please let me know if you can. See Exercise 2.7 .4.

2.5.3 Using the Form_AfterUpdate Event

It would also be good HCI to confirm to the user that the record has been saved successfully. The
best place to do this is in the Form_AfterUpdate event. VBA Help: “The AfterUpdate event occurs after
changed data in a control or record is updated.” (Look at the VBA Help system for full details). Add an
AfterUpdate event for the form with code shown in Fig 2.5.5. Note that the call to mySetToviewMode is now
here, as this could be a more appropriate place to put it, as we know that the record has been saved
OK.

Private Sub Form_AfterUpdate()

'This is executed when a record is updated in the underlying table/query
myDisplaylnfoMessage ("Data for " & [Firstname] & " " & [Lastname] & " saved OK")
mySetToViewMode ‘moved here from cmdSave — see Fig 2.5.2.

End Sub

Fig 2.5.5 code for Form_AfterUpdate event

Now test your changes by doing the following:
e Open your Membership form. It will be in the default view mode. Change a record, click on the

Save button. Say NO to changes and check result.

e Change the record again, click on the Save button and this time say YES. Check result.

e Change record and move to another record without saving. See what happens. Test YES and NO
replies.

e Change record and close form. Test both YES and NO replies.

o When you reply NO you will get a ‘You can’t change this record at this time’ message from
Access. If you have your own wizard Close button on the form and disable the little X in the
top right-hand corner, the form will close without giving this message.

e Change record, save it (reply YES), move to a new record.

¢ Do not change record, move to a new one.

You should now have seen how the Form_BeforeUpdate and Form_AfterUpdate events work, and that they
are both called automatically when a record is saved. See section 1.1.4 about the order of events.

The method shown above cancelled the changes automatically when the user chose not to save. This
could be a nuisance if the user hit ‘No’ by mistake, or if he/she wishes to make more changes before
saving. You might prefer to have a Cancel button on the form and, when the user chooses ‘No’ to tell
him/her to click on this button to cancel the save. Note that until the save has been cancelled, the user
will not be able to do anything else. A Cancel button can be created using the command button
wizard.

2.6 Adding and Deleting records

As well as the options of View, Edit and Save, two more general maintenance functions are Add and
Delete. In the items below, customise the code (in your myResetButtonsToOff procedure and the
cmdNew_Click and cmdDelete_Click events) so that the text colours on the buttons change appropriately
when the button is clicked. Note also that edit mode must be set on for a record to be added or
deleted.

2.6.1 Add a New Record

It is possible to add records by clicking on the ‘new record’ button on the Access toolbar on the
bottom of the form, but, to be consistent and for better control of operations, it is best to add a
command button of your own, to add to the existing View, Edit and Save buttons.

VBA Starting v5-1.doc Page 32 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance
Add a New command button (use wizard for Add New Record),

Look at the code generated for this event. The following line presents a blank form to the user for a

new record, but the record navigation buttons can still be used to access previous records:
DoCmd.GoToRecord , , acNewRec

Add the four lines shown in Fig 2.6.1 to the code for the New button, after the DoCmd.GoToRecord
statement. Click on the New button and enter and save a new record. Note that the Form_BeforeUpdate
procedure is called automatically to provide the user with a chance to save or cancel, and the
Form_AfterUpdate procedure is also called if a record is saved (see Section 2.5), so no new procedures
or messages are needed here.

cmdNew.ForeColor = myconButtonActive 'show New button as activated

cmdView.ForeColor = myconButtonlnactive 'show View as deactivated (was set by Form_Current event)
AllowEdits = True ‘as user will be entering new data

Title.SetFocus ' position cursor to first field

Fig 2.6.1 code to add to New button event code

If you wanted the form to load with a blank record as (rather than the first record) then you could
simply copy the DoCmd.GoToRecord Statement into the Form_Load event. However, setting the AllowEdits
property to False has no effect with a new record, so showing the form as apparently in View mode is
rather misleading in this application. The only way round this that | can see is to set a ‘flag’ (a variable
that the code uses to tell it what to do in different situations — this is a common programming
technique) to tell the code when the form has just loaded. Look at the code in Fig 2.6.2.

e Thelines in bold font are the changes to existing code.

e Dim bFormLoad As Boolean declares a global private variable called bFormLoad of type Boolean. This is
the flag.

e The Form Load event calls the event code for the New button in order to set the button activations.
Calling event code in this way is perfectly allowable and can be a very useful programming
technique. After doing this it sets the bFormLoad flag to true so that the next automatic call to the
Form_Current event will know that the form has just loaded.

e The Form_cCurrent event is called automatically by Access from the Form_Load event, so this checks
the flag to see whether or not it has been called from that event, or from something else (such as
a move to a next or previous record). If it has been called from the Form_Load event, then the flag
bFormLoad is set to False (as it has now served its purpose) otherwise the form is set to View mode.

Dim bFormLoad As Boolean 'flag set to True when form is loaded, for new rec at start

Private Sub Form_Current()
'default settings when user moves to a new record and at Form_Load

If bFormLoad Then 'is call from Form_Load event?
bFormLoad = False 'Yes - set flag to false - have new record with Edit set to True
Else
mySetToViewMode 'No - set the form to view mode
End If
Title.SetFocus ' position cursor to first field
End Sub

Private Sub Form_Load()

cmdNew_Click '‘open form in new record mode (blank record)
bFormLoad = True 'to tell Form_Current event that call is from Form_Load event

IbIHeading.Caption = myconChelmerName 'set main heading

End Sub

Fig 2.6.2 code to load form in New Record mode

VBA Starting v5-1.doc Page 33 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance
2.6.2 Delete an Existing Record

Create a Delete command button using the wizard. When you test this you may notice that Access
has its own ‘are you sure?’ procedure. To make this more elegant, do:
e Ask your own ‘are you sure?’ question.
o Disable the Access message by using Tools 2Options 2Edit/Find and clearing the tick for Record
Changes.
e You will also need to add code to myResetButtonsToOff as before.
e Suggested changes to code for the Delete button are shown in bold in Fig 2.6.3. There are two
new features demonstrated in the code for the message.
0 vhcCrLf is a built-in constant for a new line. Look at the message in Fig 2.6.4 and note that the
text is now spit over two lines. (CrLf stands for ‘carriage-return, line-feed’)
o The if statement is rather long so is split over several lines. The end of one line terminates in
a space and then an underline character, and the start of the next line begins with & and a
space character.

cmdDelete.ForeColor = myconButtonActive ‘show Delete button as activated
cmdView.ForeColor = myconButtonlnactive ‘'show View as deactivated (was set by Form_Current event)
AllowEdits = True

If myYesNoQuestion("Are you sure you want to delete this record? " _
& vbCrLf & [Firstname] & " " & [Lastname]) _
=vbYes Then
DoCmd.DoMenultem acFormBar, acEditMenu, 8, , acMenuVer70 ‘wizard code
DoCmd.DoMenultem acFormBar, acEditMenu, 6, , acMenuVer70 'wizard code
myDisplaylnfoMessage "Record deleted OK"
Else
myDisplayIlnfoMessage "Deletion cancelled"
End If

Fig 2.6.3 Changes to Delete button code to ask an ‘Are you sure?’ message

Note that this procedure will physically delete the record, and any cascaded deletions, from the
database. This may not always be what is wanted, as the record details could not then be used in any
historical data analysis. In some applications it may be more appropriate to flag the record as deleted
or ‘not current’, possibly by setting a status field in the record to a certain value. Queries that list
current records would then have to ensure that these records are excluded from any list. Alternatively,
you could move the record details to separate archive table(s) possibly by an Append query or
embedded SQL.

1=
Chelmer Leisure and Recreation Centre ChseF |
0e Form

Membership Details

Membership Mo
Title: IMr Firstriarne |Andrew Lasthame IDther 4'
Street |1 5 High Street Oecupation Istudent
Town IChelmer Date of Bith I 1740941980 |
County ICheshire [T - | —
Chelmer Leisure and Recreatio |
PostCode [T TRE Chelmer Leisure and Recreatio
Telephane No ID1 777666955) | Arevou sure you wank to delete this record? |
‘-—‘./ Andrew Other
Sporting Interests ,Y—I N I
BS [u] b
Anpthing and eventhing eee
Date of Joining | 1440842004
Date of Renewal I

Record: I1| 4 || 21k |b| |He| of Z1
Fig 2.6.4 Screen and message for Delete

VBA Starting v5-1.doc Page 34 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 2 — Using event code on forms — data maintenance

2.7 Exercises

2.7.1 Buttons to Renew Membership and Change Address

As suggested at the end of section 2.3, add buttons to allow the user to renew membership (perhaps
setting a default renewal date of the system date) and change address.

The buttons will be non-wizard buttons, and the cursor should be positioned automatically in the Date
of Renewal or Street field as appropriate.

You will need to do coding to ensure the correct button colours and to set the AllowEdits property to the
correct value.

2.7.2 Use Cancel Button on Membership Form

As suggested at the end of section 2.5, instead of automatically cancelling (undoing) the changes
when the user chooses not to save, provide a cancel (undo changes) button that the user can use
instead.

You will need to set the Cancel property to Yes in the button property box (check VBA Help to see
why).

Try making the button invisible or greyed-out initially (in the property box in form design view), make it
visible by code if the user replies ‘No’ to the Save message, and set it back to invisible by code (move
the cursor to another button or field first) after it has been used.

This is a good exercise to make you think about the order of events.

2.7.3 Stock Levels Form

Create a form for the Stock Levels table, and add some add data maintenance functions for that as
demonstrated in this section for the Membership form.

This form will be used again in the next section.

2.7.4 Enabling/Disabling Close button

As discussed at the end of section 2.5.2, enable the Close button only when there is no unsaved data
on the form.

A suggested method is:
e Form_Dirty event: disable the button.

o This event is activated whenever there is a change to any of the data on the form.
e Form_BeforeUpdate event: if the user says No to changes, then enable the button.

o The user has decided to abandon some changes, and may want to close the form.
e Form_AfterUpdate event: enable the button.

o The record has been saved, so the form can be closed.

VBA Starting v5-1.doc Page 35 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

PART 3 — USING EVENT CODE ON FORMS
— MISCELLANEOUS FEATURES

REVIEW OF PART 3:

In this part of the Trainer you will see...

e ...that a BeforeUpdate event can be used to perform field or form validations before a value
or record is updated.
o ...that an AfterUpdate event is used for any calculations or actions that you want to do with

the new value once data has been updated.

e ...how to code for field and form validations.

e ...use of the Forms Collection to reference objects on an open form.

e ...how to write a function to calculate a person’s age from their date of birth.

e ...how to use various built-in functions, including some to help with validations and some
for data conversions.

e ...how to use Domain Aggregate Functions to find and count records in a table or query,
and to use this to show total records on a form.

e ...that command button code can be called just like any other procedure code. This can
be useful for coding automatic saves, for example.

e ...that field GotFocus and LostFocus events are used for actions required when the cursor
leaves or enters a field.

e ...how to filter records on a form and count up the records filtered.

o ...that afilter condition, and a criteria condition for a Domain Aggregate Function, both
need to be coded just like the WHERE clause for an SQL statement.

e ...some uses of list and combo boxes, and how to change the contents at run-time.

See Appendix H for details about Access built-in Functions.
See Appendix | for details about the Forms Collection.
See Appendix J for some useful DoCmd methods.

3.1 Introduction

The basic data maintenance functions as described in Part 2 only go so far. Part 3 covers some
further features such as doing calculations, highlighting fields on a form, searching for records,
validations, filtering records, counting records, etc. These features not only improve on the basic data
maintenance functions but they make interrogation of the data easier (after all, the whole point of
putting data into a database is to do something with it!).

3.2 Automatic Calculations

3.2.1 Stock Form

o]
3.2.2.1 Value of Each Stock Item Item Cade ltarm Stack | Re-order level | Unit Price
a 1 Sports towel a0 25 £6.99
. . 2 T-Shirt (small) 72 | £10.50
Itis easy to .show some calculations on — 3 T-Shirt (mediurm) 17 o0 £12.00
forms by using the standard Access : 4 T-Shirt (large) 42 20 £14.00
facilities. For example, using a Stock form 5 Skipping rope 13 10 £1.93
(based on the Stock Level table, possibly || G| Knee support 7 5 £3.75
from Exercise 2.7.3) you can show the o g f\é‘k'e suppart 3 o £3.50
L uns of Steel" video 5153 30 £12.00
total stock value for each item on the form. [3] o o o £0.00
Record: L[;“ 1k |kl |r*|af &

Fig 3.2.1 Stock Level table with column for Unit Price

First add a column for Unit Price to your Stock Level table, as in Fig 3.2.1.
Then add the Unit Price field to your Stock form.

VBA Starting v5-1.doc Page 36 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

Add an unbound textbox to the Stock form. This will not be
bound to the table. Set the following values in the property box 't:wa'”:l T ﬁ
(See F|g 322) MAME .« oo ee e txtvalue

. =[Stock]*{Unit Price]

e A suitable name for the field. Fomat. L oy
o The name here is txtvalue, where txt identifies the field TR o u
as a textbox (see Appendix E). DEBE Do vo NN
o The formula =[Stock]*[Unit Price] in the ControlSource property. e -ocoen S
o The value in txtvalue will change automatically if the St e o
quantity or the price is changed. EEEI,;E?&ZT:L?" ' :“
Format = Currency. Syl s
The textbox is not a data entry field so show this by: i - e
o Locked = Yes Fher Lok '+ |[Databese Defalt

o BackStyle = Transparent T I
. Scroll Bars More:
o0 SpecialEffect = Flat o

Can Shrink vo
Left . 5.423em
Top. 3.

Width . . . 1.836cm

An alternative (and possibly simpler and more flexible method) & - I
would be to create a query based on the Stock table with a il -
calculated column for the Total Value, and then base the Stock i | m
form on this query. AT, " s e e

.. MS Sans Serif
Font Size . 8
Font Weig . Mormal
FombTtalic . v Mo

H

Fig 3.2.2 Properties for the Stock Value textbox

Whichever method you use, your form could now look like that shown in Fig 3.2.3 (apart from the re-
order level highlighting and the Receive Stock button; these are demonstrated later in this section).

1=
Chelmer Leisure and Recreation Centre Close Form |
Stock Details

Item Code: 7 View | |

Item Diescription: |Ank|e support
Mumber in Stack: |—4 Total value of this item

£14.00
Unit Price: £3.60

Flease enter amount of stock received

[1

recard: e | [T 7 [rifr#|af
Fig 3.2.3 Stock form showing value in stock for the item shown.

A third method of doing this would be to code txtValue = [Stock]*[Unit Price] in the Form_Current event.
But if you do this you will have to remember to update it yourself (by VBA code) whenever the [Stock]
or [Unit Price] values are changed.

Run-time errar 2147352567 (50020009)':
You should note that if you have a value already set in the You can' assign a vakue to this sbiect,
ControlSource property you cannot override this in code. You will
get the error message shown in Fig 3.2.4 if you attempt to do
this.

Cantinue | End | Debug I Help |

Fig 3.2.4 Error Message when ControlSource property is already set.

VBA Starting v5-1.doc Page 37 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.2.2.2 Highlighting low stock

The form shows the re-order level. It is likely that a regular re-order report will be produced to list all
items that need re-ordering, but it could also be useful to highlight these items on the form. A simple
method could be to show the re-order level field with bold font and a red background. Add the
procedure shown in Fig 3.2.5 to your Stock form code module, and add a call to the module in the
Form_Current event. Now, when you open your form and move from record to record, the low stock
items are highlighted and the rest are shown normally.

Note that you need to code for both situations in order to reset values. If you did not code the Else
clause (and actions) then the Bold/Red highlighting would apply to all records after the first low stock
item has been shown, whether they are low stock or not.

Private Sub myCheckReorderLevel()
'highlight low stock items

If [Stock] < [re-order level] Then
[re-order level].FontBold = True
[re-order level].BackColor = vbRed

Else
[re-order level].FontBold = False
[re-order level].BackColor = vbWhite

End If

End Sub

Fig 3.2.5 Procedure to highlight low stock

A new feature for Access 2000/2002 is that of Conditional Formatting which works in a very similar
manner to that for Excel. You would be able to do the highlighting of the Re-order Level field using
Conditional Formatting instead of by code, but code can be more flexible.

If you wished, you could also have information on the form giving further details about the stock
situation, such as when the stock was ordered, how much was ordered and when the delivery is
expected. This would require further field(s) on the Stock Level table, which you would put on the form
and set visible/invisible as appropriate, in the new procedure myCheckReorderlevel. You would not be
able to do this using conditional formatting.

3.2.2.3 Adding Stock

When stock is added (stock that has been ordered has now arrived, for example) you need a
procedure to do the adding. It is possible to use the form as it is and let the user amend the number in
stock, but they may count up incorrectly and get it wrong. It may also be required to record the date

when stock was received, but this would need an extra field in the Stock Level table.

You could do this by adding a ‘Receive Stock’ button to the form, with the code shown in Fig 3.2.6.

Private Sub cmdReceiveStock_Click()
'record new stock

myResetButtonsToOff Only if you have coded button
cmdReceiveStock.ForeColor = myconButtonActive colour procedures
AllowEdits = True

txtReceived.SetFocus ‘move focus to field for stock amount

End Sub

Private Sub txtReceived_AfterUpdate()
'update stock level with value received

[Stock] = [Stock] + txtReceived 'update number in stock

myCheckReorderLevel ‘check highlighting etc

cmdSave_Click 'save automatically, if wished (saves user having to hit the button)
End Sub

Fig 3.2.6 Code for recording stock received

VBA Starting v5-1.doc Page 38 Version 5.1 — July 2005

VBA Trainer - Getting Started

Points to note:

Part 3 — Using event code on forms — miscellaneous

e The field AfterUpdate event is the normal place for putting actions that you wish to take place once
the data has been entered (compare this with the Form_AfterUpdate event).

e xtReceived is an unbound textbox on the form, but it could also be a field from the table if it is

required to record the number of items received.

o Asitis atextbox it will need to be cleared for each record so code txtReceived = Null in the
Form_Current event. Textboxes have Variant datatypes so can be set to Null.
o Validations are discussed in Section 3.3. See also Exercise 3.7.1.

e Here the event is used to:

o Update the number of stock for the item. Note how to code the assignment statement.

o Check whether or not the item is still low on stock.

o If any information needed to be added to any fields in the table recording date of receipt etc

then this could also be done here.

o Call the Save button event code. This saves the user the necessity of doing so and could

speed up the entering of details of new stock.

o If the controlSource of the textbox txtvalue has been set to the formula to calculate the total
value, then this value will be updated once all the code in the AfterUpdate event has been
completed. If you have coded this formula in the Form_Current event, then you will need to

update the value there.

3.2.3

3.2.3.1 A myCalculateAge Function

Showing the Member’s Age on the Membership Form

It might be useful to show the member’s age on the form. This would act as a check that the correct
membership category has been chosen, and may also help with visual identification of members.

This formula could be coded directly into a suitable form event, but it is always good practice to code
separate tasks in separate procedures, so that the tasks can be reused. Create a new function in your

code module Calculations, as shown in Figure 3.2.7.

Public Function myCalculateAge(prmBirthDate As Date) As Integer
'given a date of birth, the function calculates an integer age, using today's date
' (This procedure originates from DMU VBA Trainer)
Dim dtDate As Date ‘for system date
Dim intAge As Integer ' variable for result of calculation
dtDate = Date ' system date
dtDate = #11 Aug 2004# ‘testing only - remove after testing
intAge = Year(dtDate) - Year(prmBirthDate) 'subtract years
If Month(dtDate) < Month(prmBirthDate) Then ' if not reached month yet
intAge = intAge - 1 ' subtract 1
Elself Month(dtDate) = Month(prmBirthDate) Then ' or if same month
If Day(dtDate) < Day(prmBirthDate) Then ' but not reached day
intAge = intAge - 1 subtract 1
End If
End If
myCalculateAge = intAge ' set result as value to return
End Function

Note this useful
method of testing
with different
‘system’ dates.
Rather than coding
Date() directly in
the calculations,
put the system
date in a variable
first. When testing,
you can then set
the variable to any
other date that you
wish.

Test No | Birth Date Reason for test System date Expected result
1 1Mar 1970 | Date with month before current month 11" Aug 2004. 34
2 1Nov 1970 | Date after current month, same year as As above 33
test 1.
3 10 Aug 1970 | Boundary test — birthday was yesterday As above 34
4 11 Aug 1970 | Boundary test — birthday is today As above 34
5 12 Aug 1970 | Boundary test — birthday is tomorrow As above 33
6 31 Dec 1969 | Last day of year As above 34
7 1Jan 1970 First day of year, 1 day after test 6. Age As above 34
same as test 6
8 2 Feb 1994 | Boundary tests with leap year system date. | 29" Feb 2004 10
1 Mar 2004 9
9 29 Feb 1992 | Boundary test with leap year birthday. 28 Feb 2003 10
1 Mar 2003 11

Figure 3.2.7 Code and test plan for function myCalculateAge.

VBA Starting v5-1.doc Page 39

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

Testing Notes...

e ...When you have conditional expressions using >’ or ranges, you must check values ‘at the
boundaries’. In the example above, the boundaries are when a member’s date of birth is one day
either side of, and equal to, the system date (Don’t forget to check to check for equality; many
students check’ >’ and ‘<’ and forget to check ‘="!). Boundaries are points at which code can often
fail to work as expected.

o ...When testing with dates it is also useful to check the last and first days of a year, and leap
years. These are also points at which code can fail to work as expected.

e _The plan and expected results show the actual data to be used for testing and the actual result
expected. Work this out in advance of testing!

Use the Debug Immediate Window (section 1.4.3.2) to test this out: ?myCalculateAge (#1 Mar 1970#)
Note how to enter dates when debugging and coding. Access is American software so there can be
confusion between USA and UK formats. It is safest to type as #dd mmm yyyy# format. In code,
Access will change the format, but the date value will be as you want it to be.

Compare this new function with the DateDiff function (use the VBA Help system). The statement
DateDiff(“yyyy”, #1 Nov 70#, date())

will merely subtract the years of the given dates, and in this case will give 34 as the result (assuming
today’s date is in August 2004). _iolxi

Category Mo
Lastnarne
Firstname d

This new Public function can now be used anywhere that you
want to show the member’s age.

The function can also be used in a query (just as you used your _ :
. Figld: [Age: myCalculatedoe{ Date of Rirth
myUpdateFees function in section 1.5); see Fig 3.2.8. This will give a Table: 2

more accurate value than that used in McBride Unit 13 Task 1. o

Criteria:

ar: i
4 3
|

Fig 3.2.8 Using the myCalculateAge function in a query

3.2.3.2 Showing the Age on the Form

Create a textbox on the Membership form by the Date of Birth, and give it the name txtAge with
suitable text in the label and suitable formatting (Locked = Yes, BackStyle = Transparent, etc)

Two situations when it would be useful to show the member’s age are:
o When a date of birth is changed:

o Create code for the AfterUpdate event for the date of birth field and enter the code

txtAge = myCalculateAge([date of birth]) * show member age
e When each new record is shown:

o Open the code for the Form_current event and enter the line of code shown above. When you
open the form with a blank record or move to a new record you will get the error “Run time
error ‘94’: Invalid use of Null”. The failure occurs because the Date of Birth field for the new
record is null.
= One way round this is to alter myCalculateAge to return a Null, or perhaps an error code, if

the date of birth is Null.
* Another is to trap the error yourself by code. See Part 2 of the ‘Further VBA Trainer.
= A third way is to code the following in the Form_Current event:

txtAge = Null ‘ clear any previous age

If Not IsNull([date of birth]) Then ‘ check field is not null first — uses built-in IsNull function (App H.5)
txtAge = myCalculateAge([date of birth]) ‘ show member age

End If

Your form should now look like that shown in Figure 3.2.9, with the age showing in the age field. (The
Category Type is from section 3.3).

VBA Starting v5-1.doc Page 40 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 3 — Using event code on forms — miscellaneous

Important: look at VBA Help for the IsNull function.

Note that coding

if [date of birth] = Null or

if [date of birth] <> Null

will both give the wrong result. You

must use the IsNull function to check for Null in a textbox. The textbox must not have a format or input
mask that restricts data entry if you want to check what the user has entered.

Membership Details

Chelmer Leisure and Recreation Centre

B Membership

=1o1x]

Close Farm |

tembership Mo

Telephone Mo ID‘I VT BE9Z36

Sporting Interests

Tenriz, Squash

Record: |<| Ll | 1 kn |He| of 20

Title: Iﬂ] Firstrame IAndrewJ Lasthame IW’aIker

Street I‘IB Dovecot Close Ocoupation |Builder

Tawn [Ereimer Dateof Bith [12/03/1952 Age
County IEheshire Category Mo I 2 [Senior Club

Fost Code IEH2 ETR

Sex
& Male
Smoker I ’7

[Drate of Joining

Date of Renewal I 03/021997

" Female

I 03/02/1932

Test No | Reason for test Date of birth Expected result

1 Change a member’s date of birth Member 1, Andrew Walker, Age = 52 initially.
and check that the Age field changes | DOB = 12/03/1952, Age = 51 after
and is correct. (This tests correct Change DOB to 12/03/1953. change made.
working of field AfterUpdate event).

2 Move from record to record. See the | Member 1 DOB = 12/03/1952 Age =52
Age for each member. Check that it Member 2 DOB = 29/11/1960 Age =43
is correct. Etc.

3 Click on the New command button, Add new record with DOB of Age is blank initially
the Age field should be blank initially, | 15/7/1944. for the new record.
and will show the member’s age Age = 60 after DOB
after the date of birth is entered. has been entered.

4 If you have set the form to open with | N/A Age is blank initially

a blank (new) record when it loads
then the code should also show the
Age field as blank.

when form opened in
new record mode.

Figure 3.2.9 Membership Form with Age field (run date = 11" August 2004)
And possible test plan

The field AfterUpdate event is the normal place for performing calculations on field data, as the data has
now been accepted into the field (see also section 3.3.1). The results of the calculations can be put
into other fields as well as into unbound controls. You could, for example, use the age to suggest a
suitable membership category for new records and when the date of birth is changed.

If you have coded the Cancel procedure for exercise 2.7.2 you may also need to code the calculation
for the age in there as well.

An alternative method to having a calculated field on the form could be to base the form on a query
which has a calculated column for the age, but:
(a) either... the myCalculateAge function would then need to cater for the situation where the Date of Birth
field is blank (as for a new record)
(b) or ... you could code Age: lif(IsNull([Date of Birth]),Null,myCalculateAge([Date of Birth])) for the column in the
query. IIF is also used on page 134 of McBride. Look it up in VBA Help; it can be very useful.

VBA Starting v5-1.doc

Page 41

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.2.4 Showing the category type on the Membership form

The simplest method of doing this is probably to create a new query based on the Membership table
and the Category table, with all fields from the Membership table plus the category type. Then change
the form RecordSource property to use the new query, and add the category type field to your form.
Another way (and this could be useful if the table was a look-up table not linked to the main table) is to
use the DLookup function (see Appendix H) to get a value to be put in an unbound text box (here called
txtCategoryType) on the form.

Put the code in Fig 3.2.10 in your Membership Form_Current event.

Coding the IF check for the Category No is not strictly necessary here, as the function will return a
Null value if the required Type is not found.

txtCategoryType = Null ‘clear any previous text
If [category no] <> 0 Then ‘check field has a valid value — zero is the table/field default for new records
‘get Category Type from Membership Category table

txtCategoryType = DLookup("[Category Type]", "Membership Category", "[Category No] = forms!Membership![Category No]")

End If

Fig 3.2.10 Using the DLookup function for the Category Type

The DLookup function is one of Access’s built-in Domain Aggregate Functions (see Appendices G.6
and H.6) and is the VBA code equivalent of a SELECT SQL statement which returns just a single
value. The equivalent SQL would be:

SELECT [Category Type]

FROM [Membership Category]

WHERE [Category No]=[forms]![Membership]![Category No];

If you have problems getting one of these Domain Aggregate Functions to work (or problems
understanding how they work) it can help to create the SQL (via the Query Design Window if you find
that easier) as a check on your VBA code. See Fig 3.2.11.

=1k @ DLookup ORI [=TEY
:| Category Type
- Senior Club
Category No 1
Category Type

Membership Fee

- Record: I4| 4 II
<| I 3
Field: |Catmaary Tyoe Category Tio -1 ~|| Fig 3.2.11 Query created from the SQL shown
Table: [Membership Catega | Membership Categor above, to show how the DLookup function
Sork:
Show:] works. The Membership form is as in Fig 3.2.9.
Criteria: [Forms]![Membership]![Category Ma]
ar: "I
P »

The DLookup function has the basic format: DLookup(expression, domain, [criteria])

e Expression = the name of the table field that you are looking for. The SELECT part of the SQL
statement.

e Domain = the name of the table or query. The FROM part of the SQL statement. Note that you
can also create a query to select the rows, then use that query directly in the Domain Aggregate
function.

e Criteria = the criteria that you wish to apply. The WHERE part of the SQL with exactly the same
format. This parameter is optional.

For further information, look the function up in VBA Help.

The criteria expression uses the Forms Collection. If you are not already familiar with this, look at
Appendix .

Finally, the call to the DLookup function also needs to be coded in the Category_No_AfterUpdate event
(and the cmdCancel_Click event if you have done exercise 2.7.2), so that any change to that value will
also pick up the new Type.

VBA Starting v5-1.doc Page 42 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

3.3 Validations

3.3.1 Field Validations General | Lookup |
Farmat Short Date
i i i . . . Input Mask
It is possible to do some validations by specifying certain e s
properties in a field definition for a table. For example, for Veldation Rue <Datel)
the Date of Birth field in the Membership table you could e Text Dat of Bith must be before today
specify field properties as shown in Fig 3.3.1. e ros (Dublcates 010
IME Sentence Maode Mone

Fig 3.3.1 table field properties for Date of Birth

Required = Yes means that the user must enter a value in the field. If the user starts to enter something,
then deletes it, or deletes an existing value, then Access will provide the error message shown in Fig
3.3.2. The same message is shown if the user never enters anything in the field and an attempt is
made to save the record.

This message is reasonably understandable but you may wish to replace it with a message that is a
bit friendlier and less technical.

Microsoft Access x|

! E The Field 'Membership.Date of Birth' cannot contain a Mull value because the Required property For this field is set to True, Enter & value in this field,

Help |

Fig 3.3.2 Access error message when required field is left empty

The validation rule and text mean that the user must enter a value that makes sense in the context.
The validation condition here is checking that a member’s date of birth cannot be in the future. If the
value entered by the user violates the validation condition, then Access uses the text that is provided
for the error message. If no text is provided then default text is used. See Fig 3.3.3.

Microsoft Access |

The value you entered doesnt meet the validation rule defined for the field or control.
i To see the validation rule, click Design view, click the appropriate field, and then, if the property sheet isn't open, click the Properties button on the
toolbar, Then click the Data tab,

To salve this problem, enter a value that meets the validation rule, or press ESC ko undo your changes. Microsoft Access x|

\lj) Date of Birth nust be before koday

Fig 3.3.3 Access default message and own validation text message.

If you wanted to check that a member must be, say, at least 5 years old, then you would code
<DateAdd(“yyyy”, -5, Date())
for the validation rule. DateAdd is one of Access’s built-in functions (see Appendix H.1 and/or VBA

Help).

The Date of Birth field is defined as a Date/Time datatype, so Access will check that the value is a
valid date, The error message that Access provides is reasonable (see Fig 3.3.4), but you may wish to
replace it with a message of your own.

x

. The walue you entered isn't walid for this Field.

\‘J) For example, you may have entered text in a numeric field or a number that is larger than the FieldSize setting permits,

Fig 3.3.4 Access message when data entered doesn’t match the datatype

VBA Starting v5-1.doc Page 43 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 3 — Using event code on forms — miscellaneous

Instead of putting these checks in the table definition, you could code them in a field BeforeUpdate
event. This event works in much the same way as a Form_BeforeUpdate event, in that the code is

executed before the value in the field is updated.
e Change your Date of Birth table field definition properties to show:
o Required = No (to avoid the message shown in Fig 3.3.2).
o Datatype = Text (to avoid the message shown in Fig 3.3.4).
o Validation rule and text both blank (all validations will now be coded).

e Delete the current Date of Birth field from the Membership form and recreate it from the field list.
o If you are using Access 2003 you may not need to recreate the form field, as one of the new
Access 2003 features is that any change to a table field should be automatically reflected in

all bound fields.
o If you have recreated the field then...

= ... set the tab order to show the Date of Birth field as coming after the Occupation field
(see View =>Tab Order).; the new version of the field will have been given a tab order after

all the controls already on the form.

= ...link the Date of Birth AfterUpdate event (from section 3.2.3.2 back to the code (use the

Event tab on the property box).

o Create a BeforeUpdate event for the Date of Birth field and enter the code shown in Fig 3.3.5.

Private Sub Date_of Birth_BeforeUpdate(Cancel As Integer)
'validate the data entered in the field

Dim dtDateOfBirth As Date

Cancel = True ‘assume value will be invalid
If IsNull([date of birth]) Then 'is field blank?

myDisplayWarningMessage "Please enter a value for Date of Birth"
Elself Not IsDate([date of birth]) Then 'is date valid?

myDisplayWarningMessage "Please enter a valid Date of Birth in dd/mm/yyyy format"
Else

dtDateOfBirth = [date of birth] ‘convert from text to date format

If dtDateOfBirth >= Date Then 'is date sensible?

myDisplayWarningMessage "Date of Birth must be before today"

The Cancel parameter is
for you to tell Access
whether or not you want to
save the new value in the
field (i.e. to update the
field).

It is initially set to False (by
Access) which means that
the update is to go ahead.
You can set it to True if
you want to cancel the

Else _ update and this will require
Eng"’l‘lf‘ce' = False ‘value is OK the user to enter another
End If value before being allowed
to move on.
End Sub
Test | Data Reason for test | Expected result
No
1 Enter something in the date field , Leaving field Message “Please enter a value for
then remove it, and tab out of the empty (see also | Date of Birth”, and user cannot
field. test 7). move on until date is correct.
2 Something that is not a date (‘fghghg’ | Not a valid date. | Message “Please enter a valid
for example) date of birth in dd/mm/yyyy
format”, and user cannot move on
until date is correct.
3 A date that does not exist, such as Correct date As test 2.
29/02/2003, 32/12/2004, 9/13/2002 format, but not a
valid date.
4 A valid date after system date: Valid date, but Message “Date of Birth must be
¢ 1 day after (boundary) not sensible. before today” and user cannot
e =system date (boundary) move on until date is correct.
¢ a longer time after (non-boundary)
5 A valid date before system date: Date OK. Date accepted. No error message
¢ 1 day before (boundary) and can now move on.
¢ a longer time before (non-boundary)
6 Create a new record but don't attempt | Leaving field See last-but-one paragraph in this
to enter a date of birth. empty (see also | section. What happens here will
test 1) depend on what you have done to
trap this occurrence.

Fig 3.3.5 Validating the date of birth, and a test plan.

VBA Starting v5-1.doc

Page 44

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

The BeforeUpdate event has a parameter called Cancel which is defined as an Integer datatype. It is

actually is a Boolean variable, and uses the values True (-1) and False (0). (It seems strange not to

define it as such...).

e The default value (set by Access) on entry is False (0).

e If you set the value to True (-1) then the cursor will be positioned back in the field automatically
and the user will not be able to move on until a correct value has been entered in the field.

o If you set the value to False (or leave the original value unchanged, which is the same thing) then
this means that you are telling Access that the value is OK and the field can now be updated. Any
code in the field AfterUpdate event (see section 3.2) will now be activated.

The code for the Date of Birth BeforeUpdate event will now do the following validations:

o First it will check that something has been entered in the field.
0 You have already seen the function IsNull in section 3.2.3.2. see also Appendix H.5.

¢ If something has been entered then it is checked to see if it is a valid date.
0 IsDate is another of Access’s built-in functions; see Appendix H.5.

o If a valid date has been entered then it is checked to see if it is a sensible date. Here the check is

to ensure that the date of birth is before today’s (the system) date.

o But the text box form field on the form does not have a specified datatype, so first the text
entered must be converted to a date; an easy way to do this is to move it to a date variable.
Then it can be compared with a date value, in this case the system date returned by the built-
in function Date(). See Appendix H1.
= Alternatively, you can use the conversion function CDate (see Appendix H7 and section

3.3.2).

All the messages that will be displayed, as they are using the myDisplayWarningMessage procedure, will
have the same standard format with the Chelmer Leisure name in the header.

One condition that would not be trapped by the above coding would be where the user has been
entering data in a new record and has simply tabbed over the Date of Birth field and left it blank (see test
6 in Fig 3.3.5). You could then save the record with this field as blank. To trap this situation you could
put suitable code in the Form_BeforeUpdate event (see section 3.3.2). If you are validating data entered
into a bound field then it may be simpler to rely on the Required = Yes property in the field table
definition. An alternative method is discussed in section 2.3.3 of the ‘Further VBA'’ Trainer, to use error
handling to trap this error yourself and take appropriate action. If you are validating data entered into
an unbound field (for example, for a parameter value — see section 3.3.3) then the Required property
does not apply (though you can set a ValidationRule of Is Not Null if you wanted to).

The above coding was designed to illustrate the three standard tests that you may need for data
entry; is anything entered; is it the correct datatype; is it a sensible value (in that order).

3.3.2 Form validations

In an exactly similar way to the above, you can use the Form_BeforeUpdate event to undertake any
validations on the form that apply to more than one field (for example, checking that the Date of Birth
is less than the Date of Joining) or checking that required fields have had data entered..

The code in Fig 3.3.6 sets the value in Cancel to True if the validation condition is violated; this will
prevent the user moving on until the data has been corrected. The cursor is moved to one of the two
fields in question, ready for the user to correct either this date, or the other date (or even both of
them!).

The new code to be added to your Form_BeforeUpdate event (see Fig 2.5.4) is shown in bold. Note that
this code makes further use of the Cancel parameter.

Note the use of the built-in conversion function cDate (see Appendices F.1.1 and H.7). In Fig 3.3.5 you
saw how to convert a datatype value by moving it to a variable of the required datatype; use of a
conversion function such as Cbate is an alternative method.

Access does some data conversions for you, but you are normally unaware that these conversions

are going on. The values in the two date text box fields must here be converted to date datatypes to
compare them correctly, as dates need to be compared as date formats not as strings.

VBA Starting v5-1.doc Page 45 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

If myYesNoQuestion("Save Changes?") = vbNo Then
... leave existing coding in here ...

Else

If IsNull([date of birth]) Then
‘check to see if Date of Birth is null
myDisplayWarningMessage "please enter a date of birth"
[date of birth].SetFocus
Cancel = True

Elself CDate([date of birth]) > CDate([date of joining]) Then
'validate date of birth w.r.t. date of joining
'must compare in date formats not as in textbox
myDisplayWarningMessage "date of birth must be before date of joining"
[date of birth].SetFocus
Cancel = True
Else

' Access will automatically save the record
... leave existing coding in here ...

End If

End If

Fig 3.3.6 form validation to check for Null date of birth and to compare Dates of Birth and Joining

3.3.3 Parameter Validations

As you should already be aware, an unbound textbox on a form can be used for a parameter value.
For example, look at the additional queries in Task 5 of Unit 13 of McBride. These tasks ask for
specific values for the query criteria, but in practice, the user may want the flexibility to change the
criteria each time the query is run. Thus, a query may list all members in a given age range, or who
joined in a given year, or who smoke/don’t smoke, or who have a given sporting interest. The ‘given’
value is one that is supplied at run-time, so cannot be specified in the query at design-time.

3.3.3.1 Single parameter

Consider Unit 13 task 5 additional query number 3: ‘which members joined the Centre between 1/1/99
and 1/1/00?

Fig 3.3.7 shows a simple query that lists some basic details of members who joined in a given year. It
has a calculated column which uses the built-in function Year (see Appendix H.1) to select just the
year part of each date of Joining, and uses a parameter in a field called txtyear on a form called
Parameters. The command button has the name cmdMembersinYear.

Note that the button to run the query is disabled initially; the Enabled property has been set to No in the
field property box.

It is possible to set the field display format to a number format, and Access will check that the value
entered is numeric (see Fig 3.3.4). But doing this will not check that the value is an integer (setting the
number of decimal places to zero will only affect the display format), nor that the value is sensible.
You could also use an input mask, but violating this causes a very user-unfriendly standard Access
error message.

It is also possible to set a validation condition in the VvalidationRule property to check if the field has been
left empty (Is Not Null), with a suitable message, but this message will have an Access error message
format (which is fine if that is what you want).

The coding in Fig 3.3.9 shows how to use the BeforeUpdate and AfterUpdate events for txtYear to validate
the value entered by the user and to enable the command button if the value is OK. It assumes that
the date must be in the range 1990 to the year of the system date. If an incorrect value has been
entered then the appropriate error message should be displayed, as shown in Fig 3.3.8.

VBA Starting v5-1.doc Page 46 Version 5.1 — July 2005

VBA Trainer - Getting Started

g=8 param query - members joining in year

Please enter
Year number

Bl Guersy |

Part 3 — Using event code on forms — miscellaneous

B Parameters : Form

Members joining by year

X

Figld: |Membership Mo Lastname Firstname Date of Birth ‘eari[Date of Joining]) =
Table: |Membership Membership Membership Membership
Sork: Ascending Ascending
Shiow:
Criteria: [Forms]![parameters][txtYear]

ard

4N

Fig 3.3.7 Parameter query taking an integer value from a form

Test | Data Reason for test Expected result
No Message Button Other
1 Non-numeric Non-numeric value Message “Please Disabled. | User cannot
values enter a numeric move on.
bbb, 11/12/2004 value”.
2 Remove the Field empty. Message “Please do | Disabled User cannot
value entered. not leave empty”. move on.
3 Range-checking: Message “please Disabled User cannot
1800, 1956 Outside (non-boundary) | enter a whole move on.
1989, 2005 Outside (boundary) number between
2010, 2100 QOutside (non-boundary) | 1990 and yyyy”
(where yyyy = year of
system date,)
4 1992.5 Only integer values Message as for test | Disabled User cannot
allowed. 3. move on.
5 Valid value: Value accepted. Enabled User can
1990, 2004 On range boundaries run query.
1992 Inside range
X X |
Members joining by year Members joining by year Members joining by year
e (5 | o A guer | L e
X x| — =10/ x|
7Memh Lastname | Firstname | Date of Birth
3 Flease enter a numetic value A Flease do nat leave the parameter empty L EDavies sancram 012195
5 Jameson | Donna 041121570
- -] 19 Locker Alizon 30121933
] 18 Locker Lizm 30121983
x| x| | 8 Shenosi Imran 151031355
1 wWalker Anceese J 121034952
Members joining by year Remberelisiting b e o | 10 weiner | GeorsewF 10m2n958
ﬁf:fﬁj:g";r, [EE R Quety | \ﬁf;fﬁfrﬁﬁg fize25 Fan Uy | [12voung | aieen 25101851
B cheimer Leisure and Recreation Centre._ 1] M cimer Lcisure and Recreation Centre x| x|

1] Flease enter a whole number between 1990 and 2004
ey

] Flease enter a whole number between 1990 and 2004
LY

Record: I<| 4 II 1k |DI H&l of 8

Fig 3.3.8 various error values and error messages, one OK value and result (run date = Aug 2004)

VBA Starting v5-1.doc

Page 47

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

Private Sub txtYear_AfterUpdate() <. Reminder:
'value is OK, so enable the run query button 7") .
query button ~» The AfterUpdate event is
cmdMembersinYear.Enabled = True where you can code what

you want to happen once
the value has been
accepted into the field.
Private Sub txtYear_BeforeUpdate(Cancel As Integer) 4 e The BeforeUpdate event is
'validate year parameter used to validate the value

Const myconLowestYear = 1990 'assume this is the date the Centre opened entered into the field. It is
"This constant probably better as Public in a separate module called before the
AfterUpdate event.

End Sub

Dim intYear As Integer

Cancel = True ‘assume value will be invalid
cmdMembersinYear.Enabled = False ‘disable in case (new) value is incorrect
If IsNull(txtYear) Then 'empty?
myDisplayWarningMessage "Please do not leave the parameter empty" .
Elself Not IsNumeric(txtYear) Then 'numeric? < Use the IsDate function
myDisplayWarningMessage "Please enter a numeric value" for date parameters (see
Else Appendix H5)

intYear = Int(txtYear) 'convert to integer to compare with value entered; could use Cint instead (App H7)
If intYear <> txtYear _
Or Cint(txtYear) < myconLowestYear Or Cint(txtYear) > Year(Date) Then 'integer and sensible?
myDisplayWarningMessage "Please enter a whole number between " & myconLowestYear & " and " & Year(Date)
Else
Cancel = False 'value OK
End If

End If

Fig 3.3.9 Using the field BeforeUpdate and AfterUpdate events to validate a form parameter

Points to note:

e The IsNull built-in function is used to check if the field is empty (this will happen if the user has
entered a value then removed it). See Appendix H.5.

e The 1sNumeric built-in function is used to check that what has been entered is a number. See
Appendix H.5.

o Butifitis a number it could be a fractional number.

o The Int function (see Appendix H.3) is used to convert the value to an Integer; it removes the
fractional part of the number. The integer value is put into an integer variable intYear. If the
value typed in by the user does not match the integer value in this variable, then the value
typed in was not an integer. For example, if the user typed in 1992.5, then intYear will contain
1992. The line

If intYear <> txtYear

will mean if 1992 = 1992.5....

o The line has been continued (using space then underline) to the range check conditions on the
next line, to check that the value is a sensible value.

o The range check assumes that the Centre opened in 1990, and uses the year of the system
date to get the upper end of the range. The conversion function Cint has been used to ensure
that the datatypes on each side of the comparison expressions are the same. See Appendix
H.7.

o The error message displays the values required for the range. These values may also be
useful displayed on the form to guide the user.

o All error messages are displayed using the myDisplayWarningMessage procedure, so have a common
format with the Chelmer Leisure title in the caption.

e As you have seen before, the BeforeUpdate event is used to validate the data, and the AfterUpdate
event has been used to take action once the data is OK.
o In this simple example, the single line in the AfterUpdate event could also be coded with the
Cancel = False line in the BeforeUpdate event.

VBA Starting v5-1.doc Page 48 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.3.3.2 Two parameters for a value range

If the Leisure Centre wanted to know who had joined between any two given years, say, between
1992 and 1995 (the start of 1992 and the end of 1995, that is), the form and query could be as shown

in Fig 3.3.10. Xl

Members joining between years

Start ¥ear End Year

I— I— R Queryl

g=F param guery - members joining between years : Select Query

=10l

Field: Lastname Firsknarme Date of Birth ‘ear{[Date of Joining]) =
Table: |Membership Membership Membership Membership
Sork: Ascending Ascending
Show:
Criteria: Between [Forms]![parameters2]![txtStartvear] And [Forms]![parameters2]![kxtEndyear]

ors

Fig 3.3.10 Parameter query taking two integer values from a form for a range check

This is very similar to the query and form in the previous section, but now there are two parameters

and the query checks dates with years between the two values. Each year value will need to be

validated as before, but there are a couple of added complications:

¢ You need to check that the start year is <= the end year.

e You need to know that each parameter is correct and the relationship between them is correct
before you can enable the command button to run the query.

But where do you put these checks? A logical place, at first sight, would appear to be in the AfterUpdate
code for the second date. But what if the user enters the second date first? (Unlikely, yes — but users
often do not use a system as we expect them to). And if the second date is less than the first date,
perhaps it is the first date that is wrong and needs correcting. These checks therefore need to go in
the AfterUpdate code for both the year fields. See Fig 3.3.11.

The coding in Fig 3.3.11 uses two Boolean variables as flags. You have already seen this
programming technique in section 2.6.1. There are also two Private procedures.

e The flags are set to False before each field validation and to True when the field has been validated
as OK. Then each field AfterUpdate event checks to see if both flags are true. If this is so, then both
values have been validated as OK and the further checks can take place.

o The further check compares the two years to check that the start year <= the end year. If this
is not so then an error message is displayed and the cursor is positioned to one of the fields
ready for the user to correct at least one of the values.

o Ifthe check is OK, then the command button is enabled and the query can be run.

o There are now two parameter fields and each will need to be validated using very similar code.
Rather than copying-and-pasting the code from one into the other (a common, but misguided,
action that many students use!) a common procedure myValidateYear has been created that does
the validation. There are three parameters:

O prmYear as Variant — the value entered into the textbox, passed by the calling code, and to be
validated by myVvalidateYear.

O prmCancel As Integer — the value in the BeforeUpdate Cancel parameter, to be set by myVvalidateYear.

0 prmOK As Boolean — value for the relevant flag, to be set by myvalidateYear.

e A common procedure myCompareValues to perform the checks has been created which can be
called from each AfterUpdate event.

VBA Starting v5-1.doc Page 49 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

'used to check both values are OK before enabling the command button
Dim bStartYearOK As Boolean
Dim bEndYearOK As Boolean

Const myconLowestYear = 1990 'assume this is the date the Centre opened
'This constant probably better as Public in a separate module
Private Sub txtEndYear_BeforeUpdate(Cancel As Integer) '
'validate end year parameter .
myValidateYear txtEndYear, Cancel, bEndYearOK

End Sub

' i Validate end year parameter.
Private Sub txtEndYear_AfterUpdate() B

myCompareValues

End Sub

Private Sub txtStartYear_AfterUpdate()

myCompareValues

End Sub

Validate start year parameter.

Private Sub txtStartYear_BeforeUpdate(Cancel As Integer) A
'validate start year parameter
myValidateYear txtStartYear, Cancel, bStartYearOK

End Sub
Common

procedure to
compare the
values in the two
If bStartYearOK And bEndYearOK Then ‘'each value has been validated as OK parameters.

Private Sub myCompareValues() <«
'values are OK, so compare them to see that start year <= end year

If txtStartYear > txtEndYear Then 'check values compare appropriately
myDisplayWarningMessage "Start Year must not be after End Year"
txtStartYear.SetFocus

Else
cmdMembersBetweenYears.Enabled = True 'OK - can run query

End If

End If

End Sub

Private Sub myValidateYear(prmYear as Variant, prmCancel As Integer, prmOK As Boolean)
'used to validate the values in txtStartYear and txtEndYear .

Dim intYear As Integer

... ; Common
prmCancel = True ‘'(assume value will be invalid) procedure to
cmdMembersBetweenYears.Enabled = False validate each
If IsNull(prmYear) Then ‘empty?

myDisplayWarningMessage "Please do not leave the parameter empty" parameter value.
Elself Not IsNumeric(prmYear) Then ‘numeric?

myDisplayWarningMessage "Please enter a numeric value"
Else

intYear = Int(prmYear) ‘convert to integer to compare with value entered
If intYear <> prmYear _
Or Cint(prmYear) < myconLowestYear Or Clnt(prmYear) > Year(Date) Then 'sensible?
myDisplayWarningMessage "Please enter a whole number between " & myconLowestYear & " and " & Year(Date)
Else
prmCancel = False 'value OK
End If

prmOK = Not (pormCancel) 'to return True if validation OK, otherwise false
End If

End Sub

Fig 3.3.11 A method of validating two parameter values against each other

VBA Starting v5-1.doc Page 50 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

In the case of this particular example you could set a default value for each date; for example set the
start date to 1990 and the end date to the year of the system date. You can remove the need for the
Boolean flags and can enable the command button from the start. This change may not be possible in
all similar situations.

To do this, code as shown in Fig 3.3.12 in the Form_Load event, and remove all mention of the Boolean
variables bStartYearOK and bEndYearOK.

Private Sub Form_Load()
'put default values in the textboxes
‘convert them to text for correct and easier comparisons with the text entered by the user.

txtStartYear = CStr(myconLowestYear)
txtEndYear = CStr(Year(Date))

End Sub

Fig 3.3.12 Code for Form_Load event to set default values for the two parameters

Whichever method of coding you use, you must test...
e ...each field as in the test plan shown in Fig 3.3.8
e ...pairs of values to test comparisons:

o start year < end year (OK)

o start year = end year (OK)

o start year > end year (invalid)

3.4 Searching for Records

3.4.1 Replacing the Navigation Bar Functions
3.4.1.1 Next/Previous records

Up till now you have moved from record to record by using the Access navigation controls at the
bottom of the form. There are command button wizards for various navigation controls, so add your
own buttons for Next and Previous record to the form; you should know by now how to do this.
Remember to add the new buttons to myResetButtonsToOff.

Try getting the next record at the end of a record set, or a previous record at the start of a record set.
You will see (if you debug whilst trying this) that the error procedure within the event is invoked. Using
the Debugger (the Watch facility, with the cursor positioned on the word Err is useful) find out the
value that is in Err, and replace this message with a more meaningful one of your own, using your
myDisplayWarningMessage procedure. (Hint: look at the coding in section 2.5.2 for the Form_BeforeUpdate
event, where you suppressed the DoMenultem cancelled message).

Now that you have your own buttons for Next and Previous, turn the form navigation controls off (see
the Format tab for the form’s property box). The navigation controls allowed the user to move around
the set of records, but you have now replaced most of these functions with command buttons.

3.4.1.2 Count of records

The navigation controls also showed you the total number of member records, but this is now not
shown.

In section 3.2.4 you saw a use of the Domain Aggregate Function DLookup. Another very useful one of
these functions is DCount. See Appendix H.6.
e If you were to list all the membership numbers, the SQL you would use is:
SELECT [Membership No] FROM Membership;
e To count the rows you would use an aggregate function:
SELECT Count([Membership No]) AS [CountOfMembership No] FROM Membership;
and this is what the DCount function does.

VBA Starting v5-1.doc Page 51 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

Add an unbound textbox to the header of your Membership form. Call it xtTotalMembers, and set

suitable properties (as it is not a data-entry field). Code the following line in the Form_Load event:
txtTotalMembers = DCount(“[Membership No]”, “Membership”) ‘optional criteria omitted

or
txtTotalMembers = DCount(“[Membership No]”, “Membership”,””) ‘optional criteria is the empty string

These two lines are equivalent; a missing criterion and the empty string amount to the same thing.

If you have problems getting one of these Domain Aggregate Functions to work (or problems
understanding how they work) it can help to create the SQL (via the Query Design Window if you find
that easier) as a check on your VBA code. See Fig 3.4.1.

L= 2 DCount ENI=EY

Categary Mo

Lastname

Firstname Record: Hl 4 ||

Figld: [Membership No = Fig 3.4.1 Query created from the SQL
TT‘Z'EE; 'I‘:"Delz“nbte”““’ — shown above, to show how the DCount
Sort: function works.
Show:

Criteria:

ar: -7
1| | »

The DCount function has the basic format: DCount(expression, domain, [criteria])

(that is — the same as the DLookup function used in section 3.2.4).

o Expression =the name of the table field that you are looking for. The SELECT part of the SQL
statement, but excluding the aggregate function itself as the counting of the rows is done by the
function.

e Domain = the name of the table or query. The FROM part of the SQL statement. If you wished to
use a criterion, you could create a query to select the rows, then apply the Domain Aggregate
function directly to the query.

e Criteria = the criteria that you wish to apply. The WHERE part of the SQL with exactly the same
format. This parameter is optional, and is not used here as we wish to count up all the records in
the Membership table.

Your form will now show the total number of members in the Membership table. See Fig 3.4.3. You
will also need to code the line shown above in the Form_AfterUpdate event (for when a new record is
added) and when a record is deleted.

You could also create a common procedure myShowMemberCount, code a DCount statement in there
and call the procedure whenever needed. See Fig 3.4.2.

Private Sub myShowMemberCount(prmFilter As String)
‘prmFilter is a WHERE condition, used when records are filtered

txtTotalMembers = DCount("[Membership No]", "Membership", prmFilter)

Fnd Sub

Fig 3.4.2 Common procedure to count records for the form

To call the procedure to count all the records, simply code
myShowMemberCount “”

the “ represents the empty string, and means that there is no WHERE condition.

The point of the parameter prmFilter will become apparent in section 3.5.

VBA Starting v5-1.doc Page 52 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.4.2 Looking for a Particular Record

With a very small data set, it is possible to trawl through all the records until the required record is
found. With a large data set (such as a membership list) it is unacceptable to require the user to do
this. So do the following:

e Open the Membership form in design mode and, using the toolbox wizard, create a combo box on
the form. (You may need to shuffle your command buttons around to make room). See Fig 3.4.3.

e Choose to have the combo box used to find a record on the form (the third option you are given),
and select Lastname, Firstname and Street from the list given (the list of fields in the table). The
Membership Number will be chosen automatically as this is the Primary Key.

o Note that the form must be based directly on a table or query. Check the form RowSource
property; if this is an SQL statement then you won'’t get the third option with the wizard. If you
do have an SQL statement here, use it to create a new query, then alter the RowSource
property (use the drop-down box provided) to reference the new query.

o For more details see Access FAQ 29 on the Frequently Asked Questions page of
http://www.cse.dmu.ac.uk/~mcspence/Access.htm ,

e Choose suitable text for the label, e.g. Find by Name.

You will now have a combo box on the form that will display a list of names from the Membership
table. If you look at your code you will see that AfterUpdate code has been generated to find the record
chosen from the drop-down box. But this doesn’t work properly yet (try choosing a name, then
choosing a second name) and the name generated (something like Combo99) isn’t very meaningful, so:

e Change the name to (for example) cboFindName. Make this change in the property box and in the
AfterUpdate code (two places in the code!). Check the property box — you may need to reinstate the
link to the AfterUpdate event code.

o The reason the code doesn’t work properly is that we have set the AllowEdits property to False for
each new record, so we cannot update the combo box once we have moved to a new record.
o Create code for a GotFocus event for the combo box. Add code in here to set the AllowEdits
property to True. In exactly the same manner, create code for a LostFocus event on this box, to
set the property back to False (just in case the user doesn’t move to another record after all).

You can now use the box to move to a new record, and the code has a meaningful name. Remember
to use the Help system to check on anything that you do not understand.

Your form with the combo box should now look something like Figure 3.4.3. You can search on other
fields in exactly the same manner.
I

=
Chelmer Leisure and Recreation Centre FrdnName [FE - Dl Formn |
_ - Lastharne [Firstname [Street -
20 members | MemberShlp Details Harig DavidJ 55 Coven Foad
Jameson Donna 25 Alder Drive
embership No Jones Edward R 17 Mavfield Averue
Al

Title: IMr Firstnarne |Liarn Lastname |Locker acker —

I Py
| Fiobingon Petia 16 Lowton Lane v

Street |2 Beech Claze Occupation I

Town [Chelmer Dats of Bith [30/12/1383 Age

County IChEShi“3 Category No I 4 [Junior Club

Post Code ICH3 aUH
*| Telephane Mo I Sex ! | |

& Male
-
.| Sparting Interests Szl Female
Date of Jaining I 13/0641992 | |
Date of Renewal I 13/06/1337

Figure 3.4.3 Form with Find by Name combo box (run date = August 2004)

Look at the property box for your Find By Name combo box (see Fig 3.4.4). There is also further
useful information about combo boxes in both Access Help and VBA Help, and in section 3.6 of this
document.

VBA Starting v5-1.doc Page 53 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

& Combo Box: choFindName

The BoundColumn property (Data tab) of the combo box is set [gerian -
to 1. If you look at the RowSource property (also on the Data Format | Data | zvert | other Al |
tab) you will see that the SQL on which the combo box is e Sofndbione

based has the Membership No as the first column, as this is Femat......

Decimal Places .

the Primary Key. In order to reference the combo box to put meumask. ..

Row Source Type . .

oo Aubo

v TablefQuery

a value in it, or display the row found, you simply need to GLOSE) 0050t 0 oo SELECT Memberip, Hemberstp o, erbershi o=
use the combo box name. You can also use the Column ColmnHeads Yes
. Column Widths .00 Ocr; 2,54cm; 2.54cm; 3, 175cm

property (not in the property box) to reference elements Bl G 000 i

. ListRows, Lee. B
within a combo box. Try typing the following into the Event List Wi . . . 8.254m
code and see what you get: TR R

MsgBox cboFindName.Column(0) ‘displays Membership No S:;;jj\'jm-‘- e fie

MsgBox cboFindName.Column(1) ‘displays Lastname MEHO e oveeies Ho

. "R f IMEMode 000w Mo Contral
MsgBox cboFindName.Column(2) ‘displays Firstname oo Home

MsgBox cboFindName.Column(3) ‘displays Street Validation Rule\
“alidation Text . . . aoao
The Membership No, although in the SQL, does not show il L
in the drop-down list (see Fig 3.4.3). If you look at the e 0000 2
ColumnWidths property you will see that the width for the first = sowasscarsa..... tes
. . . Al OF e e e5
column is 0 (zero); this hides the column. Tab Indes .. o

. . eft...oo . BFFCM
o You can use this property to change the column widths. w000 b st
. idth . . . e Jom
You may also need to adjust the Listwidth property. T =D
ack Style ... L ... Transparent
ga:k z:;w 0o TZH?ESSE;:S

If you look at the event code for the combo box you will see))
the line Fig 3.4.4 Combo Box properties

rs.FindFirst “[Membership No] = “ & Str(Nz(Me![cboFindName], 0))
This line references the combo box name to get at the bound value assigned to it, viz. the
Membership No. If the Membership No was, say 3, then this would equate to the following at run-
time:

rs.FindFirst “[Membership No] = 3”
The code here is using a Recordset method to find the record with the required Membership No.
Recordsets are discussed in the Further VBA Trainer.
Look at VBA Help to see what the Str and Nz built-in functions do. See also Appendix H.5.

If the user subsequently moves to a new record, using the Next Record or Previous Record
button, the text in the combo box is left unchanged. Add the following line to the
Form_Current event:

cboFindName = [Membership No] ‘set combo box to current record
This line references the combo box to put a value in it, so that the combo box matches the current
record.

It could be confusing for the user to have a combo box with a white background the same as for
data entry fields, so change the BackColor property to Transparent. (Format tab in property box).
o0 Do not set the Locked property to Yes or you won't be able to use the box at all! (Try it).

It would be more useful if the names were listed in alphabetical order of surname. Look again at

the RowSource property (Data tab). Click on ‘build’ (...) at the right of the row and change the query

to list the names in order. This will make finding a record even easier.

o Entering the first character of the surname is a quick way to jump to the first surname starting
with that first letter; the AutoExpand property is what allows this, so set it to No if you don’t want
this facility to be available.

You can set the ColumnHeads property to Yes if you want column headings to show.

VBA Starting v5-1.doc Page 54 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

3.5 Applying afilter to a form (with a count of records)

There is a command button wizard for finding records, but this uses a pre-set Access dialog box and
is not very user-friendly. This may or may not be suitable for a particular application.

However, it is actually quite simple to code filters for the form we have been using so far, to allow the
user to select records according to specific requirements.

3.5.1 Filtering on a text (string) field with a wildcard

Suppose we want to provide a facility for users of the system to select all records where the Lastname

begins with selected character(s).

e Create a text box anywhere on the form. Put suitable text in the label. Call the textbox txtFilterName.
The user will enter the start character(s) of the required Lastname in this field.

e Create a non-wizard command button, call it cmdFilterByName and give it a suitable caption. Create
a click event for this new button and add the code shown in Fig 3.5.1.

o Create a GotFocus event for txtFilterName and set the AllowEdits form property to True, as the default
(see Sections 2.2.1 and 2.2.3) is False.
e Test your code:

o Enter J in the textbox and click on the button. The form will now show the records for
Jameson and Jones only. The Next and Previous buttons can be used to scroll through this
list. See Fig 3.5.2.

o Enter Z in the textbox and click on the button. There are no names beginning with Z, so no
records are found.

Private Sub cmdFilterByName_Click()

'filter records by surname

Dim strName As String 'to store user text and add wildcard
Dim strFilter As String 'filter condition

strName = txtFilterName & "*"
strFilter = "[Lastname] like " & strName & "" <€———see explanation below — this has mix of single and double quotes
DoCmd.ApplyFilter , strFilter

txtTotalMembers = DCount("[Membership No]", "Membership", strFilter) w.... : Alternative methods of coding the
record count.
See explanation below.

End Sub

Private Sub txtFilterName_GotFocus()
'need this to allow user to be able to enter a value in this field

AllowEdits = True
'the property will be set back to false when the first record in the list is displayed
'(see Form_Current event).
End Sub

Fig 3.5.1 Code to select by string filter with wildcard

Explanation of each line of code for cmdFilterByName_Click in Fig 3.5.1:

e Dim strName As String
o A variable that will be used to store the user text and add a wildcard.

e Dim strFilter As String
o A variable that will used to store the details of the filter. The contents of this can be checked
at run-time in the Debugger, so you can see how this works.

e strName = txtFilterName & “*”
o This takes the letter(s), if any, entered by the user and adds the wildcard * to the end of them,
putting the result in the hidden field on the form.
o There is no need to convert the text to upper (or any other) case.

e strFilter = “[Lastname] like *” & strName & “"”
o This sets up the filter condition. If the user enters the letter J, strFilter will contain: “[Lastname]
like ‘J*™. Note that this is just like the WHERE clause for SQL.
o0 As the user text is a string value you must put quotation marks around the value in strName.

VBA Starting v5-1.doc Page 55 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

o The full string is made up of three parts, joined with the concatenation character &:

= “[Lastname] like ‘ “ — note double quotation marks around the full string, and a single
guotation mark at the end of the string which will come just before the value in strName.

= strName — this will pick up the contents of the variable.

= “ ‘" _—asingle quotation mark (enclosed in double quotation marks as it is a string
character) to come at the end of the value in strName.

o0 The code here uses single quotation marks around the value in strName, but it is also possible
to use double quotation marks or a variable containing the character for quote. This is very
clearly explained in VBA Help; use the keyword ‘quotation mark’.

o Itis not essential to use a variable, as the string “[Lastname] like ' & strName & “” could be used
directly on the next statement, but using a variable often makes debugging easier as you can
look at the value in the string

e DoCmd.ApplyFilter , strFilter
o This line applies the filter and positions the form with the first record found.
o0 The form has a Filter property and this is set to the value in strFilter.
o0 The form also has a Filteron property. This will now be set to True.
o0 By using the Next and Previous buttons the user can scroll through the filtered records.

e txtTotalMembers = DCount(“[Membership No]”, “Membership”, strFilter)
¢ myShowMemberCount strFilter
0 The first line uses the Dcount function to count up the records, putting the value in the field
already used for this purpose in section 3.4.1.2. It doesn't really matter which field is chosen
for the first parameter, as the function simply counts up the rows.
o The second line is an alternative to the first line, and uses the procedure created in Fig 3.4.2.
The value to be passed as a parameter is the WHERE condition already set up in strFilter.
o Both lines (re)use the value in strFilter; another reason for putting the condition in a variable.
o If you wanted to display a message as well when there are no records to show, you could
code the following at the end of cmdFilterByName_Click() in Fig 3.5:

If txtTotalMembers = 0 Then ‘ no record shown
myDisplaylnfoMessage (“There are no names starting with “ & txtFilterName)
End If
=
Chelmer Leisure and Recreation Centre FirdName [Jameson - Close Form |
3 members | Membership Details
tdembership Mo Enter first character(s) of
Title: Ia@ Firstname IDonna Lasthame I-Jamesnn View | | last name
| |

Strest 25 Alder Drive Occupation |H0usewile Il 6 st
Town Chelmer Dateof Bith: [04712715970 Age |

County Cheshire Categan Mo I 1

Post Code CH2 7FN

Telephone Mo Sex 1 | |

 Male
v
Sporting Interests Smoker ’7(: Female
|Serobics, squash
D ate of Jaining I 15/06/1932 | |
D ate of Renewal I 15/06/1996

Fig 3.5.2 showing the result of filtering for names starting with ‘J’.
(Using lower case ‘|’ would give the same result).

There have been no validations coded here to check what the user has the user has entered in
txtFilterName, as the value is a string value so could take any characters. In assignments and projects
you should add checks as listed below (you should know by now how to do most of them):

e Set an input mask to check for alphabetic characters.

e Create your own function to check that the characters are all within the required character codes
for A-Z, a-z. There does not appear to be a built-in function to do this. One method could be to
use the UcCase, Len and Mid functions (see Appendix H.2) to code a loop (see Appendix F.3.3) to
check each character for a valid value in the range “A” to “Z”. A possible function header could be:

Public Function mylsAlphabetic(prmString As String) As Boolean (See exercise 3.7.8).

e Check that the field is not null.

¢ Have the command button disabled initially and only enable it when a valid, non-null, value has
been entered.

VBA Starting v5-1.doc Page 56 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

All the above has been coded in a click event for a command button, but could be coded in an
AfterUpdate event for the textbox instead, removing the need for a command button.

The example above looked for a match with the start characters of a field, but by putting a wildcard at
the front of the text as well you could look for a match anywhere in a field. For example, you could
filter all records for members who have chosen ‘aerobics’ as one of their sporting interests, by looking
for the text anywhere in the Sporting Interests field. You must test fields where the required
character(s) is (are) at the start, middle and end of the field, also where there is no match.

3.5.2 Filtering on atext (string) field for an exact match

If you are looking for an exact match, then no wildcard would be necessary, so you can reference the
form field directly for the filter condition.

An example of where this might be of use is for a field such as Town or County. You could create a
wizard combo box on the form showing the values currently in use (base the combo box on a query
selecting the relevant field from the Membership table, and add DISTINCT to the SQL to remove
duplicate rows). Set the LimitToList property to Yes to prevent the user entering any other value. Then
use the value selected by the user for the filter. Possible code is shown in Fig 3.5.3.

This code is much simpler as there is no need to add a wildcard to the value.
The filter condition shows how to reference the combo box (here given the name cboTown) using the

Forms Collection reference (see Appendix |). The format is exactly as you would use if putting this as
a criteria condition in a query.

Private Sub cmdFilterByTown_Click()
'filter records by Town
Dim strFilter As String

strFilter = "[Town] = forms!membership!cboTown"
DoCmd.ApplyFilter , strFilter

txtTotalMembers = DCount("[Membership No]", "Membership", strFilter) ‘or myShowMemberCount strFilter

End Sub

Fig 3.5.3 Filtering with an exact match

You could also code strFilter = “[Town] =’ & cboTown & “”
with embedded quotation marks, as used in the example in section 3.5.1.

Select Categorny Type

3.5.3 Filtering on a numeric field urio =
Senior
. .) Senior Club
It may be useful to show all members in a certain category. This can be done
in exactly the same way as in Section 3.5.2, by creating a combo box this time Junior Club
based on the Category Type from the Membership Category table, with the Concessionary

‘routh Club

LimitToList property set to True. See Fig 3.5.4.
Fig 3.5.4 Combo box for the Category Type

Although the combo box will show the text for the Type, the value associated with the control is the
key value of Category No as this will be the bound column (see section 3.4.2). The line to set up the

filter condition could be:
strFilter = “[Category No] = “ & cboCategory

As the Category No is a numeric value, no quotation marks are required around the value. If you use

the Debugger to look at the contents of strFilter at run-time, you will see that it contains
“[Category No] = 3”

If you prefer to code using the Forms Collection reference, then you would code:
strFilter = “[Category No] = forms!membership!lcboCategory”

VBA Starting v5-1.doc Page 57 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.5.4 Filtering on a Yes/No field
Suppose the Centre wishes to filter all members who are smokers. This filter will not require a textbox
(or similar) control, but will only need a command button. The code to set up the filter condition will be:
strFilter = “[Smoker] = Yes”
If you want the Centre to be able to select smokers or non-smokers, add a check box (or a radio
button group if you prefer). The code to set up the filter condition would then be:
strFilter = “[Smoker] = “ & chkSmoker
where chkSmoker is the name of the check box.

No quotation marks are needed for a Yes/No field.

3.5.5 Filtering on a date field
Suppose the Centre wishes to filter to see who has joined since a certain date (perhaps to see who
has joined in the past week). In this case the filter condition would be set by:

strFilter = “[Date of Joining] >= #” & txtJoinDate & “#” or strFilter = “[Date of Joining] > #” & txtJoinDate & “#”
depending on the exact condition required. (txtJoinDate = unbound text box on the form for user date).
The date is a Date/Time value so needs to be enclosed within # marks. At run time, if the user entered
the date 1/1/1992, strFilter would contain:

“[Date of Joining] >= #1/1/1992#” (or “[Date of Joining] > #1/1/1992#")

and this is just like the condition you would code in SQL.

If you wanted to use the Forms Collection reference you would code:
strFilter = “[Date of Joining] >= forms!membership!txtJoinDate”

The value that the user enters should be validated in a similar fashion to that shown in section 3.3.1.

3.5.6 Removing afilter
A form has a property called Filteron. This takes the value True if a filter is applied and False if not.

To remove filters, all you need to do is set this property to Faise. See Fig 3.5.5.

Private Sub cmdFilterClearAll_Click()
'remove all filters

FilterOn = False
txtTotalMembers = DCount("[Membership No]", "Membership") ‘or myShowMemberCount *”

End Sub

Fig 3.5.5 Removing a form filter

As the count is to show all the records, the third DCount parameter (which is optional) need not be
specified on the DCount statement.

3.5.7 Combining Filters

So far, all the filters that have been shown here work individually. But what if the Centre wants to
know, for example, how many smokers have joined in the past week?

This is very simple to do, as you just need to join each filter to any existing filter, using AND (just as in
multiple conditions in SQL). If the Filteron property is set to True then you combine the new filter
condition with the existing condition(s) in the Filter property. Rather than putting this code with each
filter code, it would be best to write a procedure to take the value in strFilter and add any existing filter
conditions to it, and then call this procedure wherever it is needed. This is set as an exercise for you
to do for yourself.

VBA Starting v5-1.doc Page 58 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.5.8 Filtering on Null values

If you try any of the above filters with a Null value in the field, then the results may not be what you

would expect. Two things that could happen if you have not validated to prevent this are:

e For a text (string) field (such as Sporting Interests) the filter will show all records where the field is
not Null.

e For a non-string field (such as the category type) the filter may cause a run-time error caused by a
missing value in the WHERE condition.

If you wanted to allow the user to filter to find Null values, then you would need to code:
If IsNull(txtFilterinterest) Then
'look for empty field
strFilter = "[Sporting Interests] is null"
Elseetc

3.6. Using Combo and List Boxes on Forms

This section discusses some useful properties of these form controls, and then demonstrates how to
use VBA code to change contents of the controls at run-time and use them to update records.

3.6.1. Some useful Combo and List box properties

These two controls have several properties in common. Some useful properties and settings are
discussed below (see Access and VBA Help systems for fuller details). As with most object property
settings, these can normally be changed in design view (if you wanted to change the original wizard
settings, for example) or by VBA code.

Fig 3.6.1 shows combo box properties for two controls from the Membership form shown in Fig 3.4.3.

e ControlSource
o If you created the combollist box via the Toolbox wizard, you would be given the option to
save a value (usually a primary key) for use later, and to store it in a field on the form. If you
do the latter, the form field name is put in this property.
e RowSourceType
o This property works together with the RowSource property (see next bullet below).
o0 Value List means that the list of items is hard-coded within the control, separated by semi-
colons.
= The list can be altered at run-time by code, but then resets to the original value(s) the
next time the form is loaded.
o Table/query means that the list of items is sourced via values in a table or query. The
contents therefore vary according to the values in the table/query.
= The underlying table may be updated; see section 6.3.
e RowSource
o Ifthe RowSourceType property is Value List, then this property can be blank, or contain the
specific values required to be shown.
o Ifthe RowSourceType property is Table/Query, then this contains the SQL that selects the
appropriate columns from the table/query.
e ColumnCount
o0 Specifies the number of columns to be shown in each row of values.
e ColumnHeads
o By default this is set to No. The following will happen if you set this to Yes:
= If the RowSourceType property is Value List, then the first row of values in the list is
taken to be the headings.
= If the RowSourceType property is Table/Query, then the headings from the table/query
fields will show in the combo/list box.
e ColumnWidths
o Lists the width of each column. If a column is not required to show (for example, a primary
key value) the width is set to zero (0). In this way you can hide the column from view, but still
refer to it in code.

VBA Starting v5-1.doc Page 59 Version 5.1 — July 2005

VBA Trainer - Getting Started

e BoundColumn

o Specifies the column that is used to reference the row. If you code

myVariableName = cboBoxName

Part 3 — Using event code on forms — miscellaneous

then the value that is put in myVariableName is the value in the bound column for the

selected row.

e Column (not available in the design view property box)

o If you want to reference other columns apart from the BoundColumn, then you use this
property. Confusingly, the column numbering starts from zero (0) not one (1), which is not
consistent with the value set in the BoundColumn property.

o0 See sections 3.4.2, and 3.6.3 for examples of code.

e ListRows (combo box only)

o Specifies the number of rows that show in the drop-down list.

e ListWidth

o Specifies the full width of the list. If you add/remove columns in a combo/list box, and/or
change the individual field widths, you will need to check that the value in here is still

appropriate and change it if necessary.
e LimitToList (combo box only)

o No means that the list is purely a suggestion, and that the user can enter other values as well.

= This is the default value.

o Yes means that the user must choose a value from the list. See also section 6.3.

x x|
choFindName j ITitle_LaheI j

Format I Data I Ewent I Other All | Farmat | Data | Event | Other All |

Mame choFindMame ﬂ Title -

Control Source v | Control Source . .o j

Format . ..o CoFarmat .

Decimal Flaces Auto Decimal Places o000 Auto =1

ImputMask.o InputMask oou

Row Source T¥pe TablefCuery Row Source Type Value List

RowSoUrcE v v vv e SELECT Membership.[Member ship No], Me Row Source . ..o v e "M Mrs” Miss" D

Colurmn Counk . oo v ou s 4 Column Counk o u 1

Column Heads oo vvv s Yes Column Heads o000 o

Colurnn Widths ..o u Ocm;2.54cm;2.54cm; 3.1 75cm Colurmn Widths o0 2.54cm

Bound Column a 1 Bound Calumn 00 1

LiskRows oo g ListRows g

Liskwidth . . 8.254cm o Listwidth. ... 2.54cm

Skatus Bar Texk o000 o w0y Skatus Bar Texk

Limik To Lisk 200000000000 e ;IJ L_im.it T_D Lisk 200000000000 !\:Io LI

Fig 3.6.1 Combo Box properties for the Membership form ‘Find Record’ combo box and the Title field

3.6.2. Changing Combo Box contents at run time.

Suppose it is now required to record the Ethnic Origin
and Ethnic Category of each member.

Create two new tables as shown here in Fig 3.6.2.

The CatType field on the EthnicOrigin table is a lookup
field based on the EthnicCategory table, with the
LimitToList property set to Yes.

Add two new fields, CatType and OriginType, to your
Membership table. Use the Lookup wizard to base them
on the relevant field of the new tables, and set the
LimitToList properties to Yes. Note that the properties
shown for the combo boxes for these two fields are as
those listed in 3.6.1.

VBA Starting v5-1.doc Page 60

=10l x| =10l x|
OriginType | CatType = CatType
| P | Aftican Black | P |+ Agian
| |Bangladeshi Asian ||+ Black
| [Britigh White || Other
| |British Asian ||+ Refused
| |British Black | |* Wvhite
| |Caribbean Black *
Indian Asian b Record: M| <[
Irish White
| |Other White
Other Asgian .
| Other Other Fig 3.6.2
| other Black EthnicOrigin
| |Pakistani Asian and
| |Refused Refused = EthnicCategory
Eecord: 4] 4 ||—1L|ﬂ tables

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
Now add the two fields to your Membership form (in the example here a new form, called Membership
& EthnicGrouping, being a copy of the Membership form, has been created). Amend the RowSource
property of the OriginType field to reference the CatType field, as shown in Fig 3.6.3. If you use the
Build (...) button you will see (and can alter) the query in the query design window.

i’ Combo Box: OriginType ﬂ
IOriginType j

Format I Diata I Event I Other All I

Mame oo CriginType -

Control Source OriginType

Farmat.,

Decimal Places Auto

InputMask

Row Source Twpe ., TablejQuery

ROWS0UCE . o v v oe e v SELECT EthnicOrigin, OriginType FROM EthnicOrigin WHERE {{{EthnicOrigin, CatType)=[forms] [Membership & EthnicGrouping]! [CatType])_x LI

Column Count

ColumnHeads o
Column Widthso 2.54cm
Bound Column 1
ListRows . ..o g

List width o oo Z.54cm
Status Bar Text o000 00

Limit TaList o0 u o0 e

Fig 3.6.3 RowSource property for OriginType form field, with added WHERE clause.

The values in the drop-down list for the OriginType combo box will now be those appropriate to the
value in the Ethnic Category Type. See Fig 3.6.4.

=101 x|
Chelmer Leisure and Recreation Centre FindName [waker -1 CFlgls;

Membership Details 21 members

fembership Mo
Title: [Mr =] Fistname [Andiew J Lastname IWalker | |
Edit | |
| Street I‘I E Dovecot Cloze Occupation IBuiIder
Town [Cheimer DateofBith: | 12/3/52 Age |
County IC"TESM“a Category Mo | 2.~ | [Senior Club
Post Code ICH2 ETR
Telephone Na |D1 T BRIZ236 Sex

& Male
Smoker ¥
£ Female
I 0340241992
Date of Renewal I 27/08/2004

Sparting | nterests

Tenriz, 5guash

[rate of Joining

Ethnic Categon,: I\N'hite - I

OriginT ype:

Fig 3.6.4 Membership table with new Ethnic Category and Origin Type fields

However, the list of values shown in the Ethnic Origin drop-down list is only queried by Access when
the form is first opened; it will thus show a list appropriate to the value in the Ethnic Category field at
that time. There are two events that need to have code in order to ensure that the list shows the
correct values at all times:

e Form_Current event.
o The combo box values need to be updated for each new record, so code the following line in
this event:
OriginType.Requery 'reset list for each record
e CatType_ AfterUpdate event.

o If the value in the Ethnic Category field is changed, then the value in the Origin Type must
also be changed. The code shown in Fig 3.6.5 will make the Origin Type list drop down
automatically, and move the focus to it show that the user can see they must enter a new

value.

VBA Starting v5-1.doc Page 61 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

0 If the Required property for the Ethnic Origin field is set to Yes in the table design, then the line
in Fig 3.6.5 that clears the value in the field will fail at run-time. If you want this field to be
required, then you will have to check for it when the record is saved, possibly in the
Form_BeforeUpdate event.

Private Sub CatType_AfterUpdate()
‘change Ethnic Origin list to match the value in here

OriginType.Requery 'run the query behind the Origin combo box
OriginType.SetFocus 'move the focus to that box
OriginType.Dropdown 'show the origin drop-down list

OriginType = Null 'clear the previous value in the list

End Sub

Fig 3.6.5 code to ensure Ethnic Origin is changed if Ethnic Category is changed.

3.6.3 Using alist box to select records and change contents at run-time.

The example here uses list boxes to enable the user to register a member on a class. The form that is

used is as shown in Fig 3.6.6.

txtLetters txtLastname txtActivity txtSex
Fields bound to Classes table
B Class List _ 0O x|
Class Registration Last Name Class Activiy
Class Mo |—1 Membership No I—E |F!0b|nson |Lad|es Aerobics
¥ »
Select required Member Enter start letter(s] of sumname to narrow the list: Ir Select required class IFemaIe
Reset Member List | i
10:00 e

I embership Mo | Lasthame Firstrame Street [ate of Birth Manday 15:00 Latharn Body Conditianing | Mixed

& _ 16 Lowton Lane 07/07/1984 Monday 1300 | ‘wheildon | Stepderbics | Mised

16 Ruobirzon Rebecca I hoss Street 18/05/1368 Tuesday 14:00 Adams Ladies' Mult-gym | Female
Tuesday 15:00 Jackson Farmily Muli-gym | Mised
Wednesday | 10:00 Ewanz Ladies' Aerobic: Female
Wednesday | 14:00 Latharn Body Conditioning | Mised
Wednesday | 15:00 Franks ‘weight Training | Femnale
wednesday | 15:00 Franks wigight Training | Miked '|
4 3

Record: I<| 4 | 17 |>||He| of 17
/ Fig 3.6.6 Class Registration form |
IstMember IstClass

3.6.3.1. Create a form based on the Class List table.

Using the form wizard, create a form based on the Class List table. This table has just two fields
(Class No and Membership No) as it decomposes the m:m relationship between Class and Member.
Add the textboxes txtLastname and txtActivity.

In the Form_Load event, code the following to open the form for a new registration:
DoCmd.GoToRecord , , acNewRec

VBA Starting v5-1.doc Page 62 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.6.3.2. Add two list boxes in the form footer.
Add two list boxes as shown in Fig 3.6.6.

e IstMember

0 Base this on the Membership table.

0 Select enough details to identify the member (Membership No, Lastname, Firstname, Street,
Date of Birth) and the Sex. The last field will be used to filter appropriate classes in the Class
list box.

o Choose to show the Membership No (as this could be a useful check of identity where there
are two or members with the same name).

o Choose to store the Membership No in the field of that name on the form, bound to the Class
list table. When the user clicks on the list box, the Membership No will be put in the form field
automatically (see the ControlSource property).

o Change the field properties to hide the Sex column (set the ColumnWidth property for this
column to zero and adjust the ListWidth property accordingly).

o Change the RowSource property to sort the data on ascending Lastname and Firstname. This
is @ much more useful order than the default order of Membership No.

o |[stClass

0 Base this on the Classes table.

o0 Select all fields and choose to hide the class number.

o0 Choose not to store the Class No in the field of that name on the form. This will be done by
code later, in section 3.6.3.5, as we will check first to see if the member is already registered
on the class.

o0 Set the Visible property to No.

3.6.3.3. Add a textbox called txtLetters near to IstMember.

The list box IstMember shows the full list of members in the Chelmer Leisure Centre. For the ‘live’ list,

there could be several thousand members, which is far too many for the user to search through. The

purpose of txtLetters is for the user to be able to narrow down the search by entering the start letters of

the surname. Change the SQL/query for IstMember to add the following criterion for the Lastname field:
Like [forms]![Class List]![txtLetters] & "*"

This will select just the members whose Lastname begins with the letters entered in txtLetters.

When the form is first opened, txtLetters is empty, so all members will be selected.

Now add a non-wizard command button called cmdResetMemberList.

Add the code shown in Fig 3.6.7 to the code module for the Class List form. Note the use of the
Requery method to run the SQL for the list box, and adjust the rows shown accordingly.

Private Sub cmdResetMemberList_Click()
‘set list back to show all members
txtLetters = Null
IstMember.Requery

End Sub

Private Sub txtLetters_AfterUpdate()
‘set list to filter for the start characters entered in txtLetters
IstMember.Requery

End Sub

Fig 3.6.7 code to filter records in the member list box

VBA Starting v5-1.doc Page 63 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.6.3.4 Create DoubleClick event for IstMember.

Create a textbox called txtSex on the form. In Fig 1.6 this field is shown visible, just above IstClass. In
practice, it would probably have its Visible property set to No, but it's useful to see it while testing.

Add a criterion for the Male/Female/Mixed column in the IstClass RowSource property SQL/query of:
[forms]![Class List]![txtSex] Or "Mixed"

This ensures that only classes appropriate to the gender of the selected member will be shown in

IstClass.

Create a DoubleClick event for IstMember and add the code shown in Fig 3.6.8. Try double-clicking
on the Member list box, see the Membership No, Lasthame and Sex appear in the appropriate
textboxes, and see classes appropriate to the member’s sex in the Class list box.

Private Sub IstMember_DbIClick(Cancel As Integer)

If IstMember.Column(5) = True Then

txtSex = "Male" 'this will be used by lastClass query
Else

txtSex = "Female"
End If

txtLastname = IstMember.Column(1) 'show member lastname on form

IstClass.Requery requery IstClass and...
IstClass.Visible = True '...make it visible
End Sub

Fig 3.6.8 Code for IstMember DoubleClick event to set contents of IstClass

3.6.3.5. Check if member is already registered on the class.

There is just one more thing that needs to be done. It should not be possible to register a member on
the same class twice. Create a DoubleClick event for IstClass, as shown in Fig 3.6.9.

Private Sub IstClass_DblClick(Cancel As Integer)
Dim strCriteria As String

strCriteria = "[Class No] =" & Forms![Class List]!IstClass _
& " AND [Membership No] =" & Forms![Class List]!IstMember

If DCount("[Class No]", "[Class List]", strCriteria) > 0 Then

MsgBox "Member already registered on this class"

Undo 'clear form
Else

[Class No] = IstClass 'put class no in form field
End If

End Sub

Fig 3.6.9 choosing and validating the class for the member

3.6.4 Addltem and Removeltem methods

These new methods (not available in Access 97 or 2000) apply only to combo/list boxes where the
RowSourceType property is ‘Value List’. The RowSource property holds items separated by a semi-

“.n

colon “;”.

Access 97 had a Clear method to clear a list box. This is no longer available, but it is very simple to
clear the list box by coding:
IstOutput.RowSource =

= the ‘empty string’

VBA Starting v5-1.doc Page 64 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous

3.6.4.1. Using AddItem

To add to a list box with only column: IstOutput.Addltem Value1
To add where there are two columns: IstOutput.Addltem Value1 & “;” & Value2 and so on

Where:

e The list box is called IstOutput

e Value1, Value2 etc are variables that hold the new values for the list box row. Literals can also be
used.

3.6.4.2. Using Removeltem

The code below assumes that the list box is called IstOutput.

Delete the last row Delete the selected row
Dim intRowNo As Integer Dim intRowNo As Integer
intRowNo = IstOutput.ListCount - 1 For intRowNo = 0 To IstOutput.ListCount - 1
If IstOutput.ColumnHeads = True Then If IstOutput.Selected(intRowNo) Then
intRowNo = intRowNo - 1 IstOutput.Removeltem intRowNo
End If End If
If Not intRowNo < 0 Then Next
IstOutput.Removeltem intRowNo
End If

Fig 3.6.10 deleting a row from a list box

3.7 Exercises

3.7.1 Implement Receive Stock function, with validations

Implement the Receive Stock button discussed in section 3.2.2.3. When the user clicks on the
command button to confirm the sale, the stock quantity for this item will be updated on the form and in
the underlying table as the Number in Stock field is bound to the table.

Your tasks now are to build in checks to ensure that the user...

e ...enters a positive quantity sold for the sale (e.g. code to validate the amount entered and to
check that it is greater than zero, with appropriate messages).

e ...only presses the command button once (e.g. set the button Enabled property to False when the
form is opened, to True when a valid quantity sold is entered, then back to False after the sale is
confirmed).

e ...as an optional extra, provide the user with a facility to cancel the receive stock action.

3.7.2 Show the total stock value on the stock form

Another of the Domain Aggregate Functions is Dsum (see Appendix H.6). This works just like DCount, in
that it works out a total from the rows found, but bsum adds up values rather than simply counting
rows.

Use DSum to show a Total Stock Value on the Stock form of all stock in the Stock level table.
Remember to adjust this total when records are added and deleted. If you put this code in the right
place it will also cater for the situations when new stock is received and when the unit price changes.
See section 3.4.1.2.

VBA Starting v5-1.doc Page 65 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.7.3 Function to calculate the number of years between any two given dates.

In section 3.2.3 you saw how to create and use a function to calculate an age given a date of birth.
Using the ideas demonstrated there, write a new function to take in two dates and return the number
of whole (integer) years between them.

Put the function in your Access module Calculations as a Public Function and give it a suitable name,
such as MyCalcYears.

It would not be wise to assume that the calling code would always put the dates in the correct order,
so start the function by comparing the two dates and putting them into two variables, one for the
earlier date and one for the later date. Then compare the values in these two variables.

Use your new function to show the following on the Membership form, thinking carefully about which
events to use for the code.:

¢ Number of years since the member joined.

o Create a textbox similar to that for the Member age (or, if you have changed your
Membership form to be based on a query, you may prefer to use a calculated column in the
query).

e Age at which the member joined.

o Similar to above.

e Message on the form to indicate whether or not the membership renewal is overdue.
o Ifthe number of years between the renewal date and the system date is >=1, then the
renewal is overdue.
0 Have a label on the form with the relevant message in it, and set the Visible property to True or
False as appropriate.

e Provide a filter of members whose membership renewal is overdue.
o0 Use your new function with the Date of Renewal and the system date as arguments, directly
in the filter condition.

3.7.4 Filter on Sporting Interests

Add a filter to the Membership form to filter for specific text within the Sporting Interests field. Count
the records. See section 3.5.1.

If the filter text box is Null, then set the filter condition to filter those records where the Sporting
Interests field is Null. Count the records. See section 3.5.8.

3.7.5 Combine filters

Implement all the filters in section 3.5 (validating parameters where applicable) and then write and use
the function discussed in section 3.5.6 to combine filters.

Change the forecolor property of the filter command buttons (or a similar property of the text or combo
box, if you have decided not to use command buttons) to indicate which filters apply. Reset the
colours when all filters are removed.

3.7.6 Filter by Sex

Add a filter to select (and count) all Male or all Female Membership records. If you have done
exercise 3.7.5, then include this new filter in any code to combine filters and to set/unset colour
properties.

3.7.7 Check for missing required fields

Rather than using Required = Yes in the table definition for required fields, code checks in the
Form_BeforeUpdate event to put out message(s) when required fields have been left Null. See end of
section 3.3.1.

VBA Starting v5-1.doc Page 66 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 3 — Using event code on forms — miscellaneous
3.7.8 Create mylsAlphabetic Function

Create and test the function suggested in section 3.5.1, then use it to validate string filter parameters.
Suggested logic and a test plan are shown in Fig 3.7.1. Test the function using the Immediate Window

of the Debugger. Note that the maximum length of a string is huge, so it will not be practical to test for
that (see VBA help).

Convert string to upper case (use UCase function - then only need to check for A-Z)
(put in a separate variable so do not change input parameter)

Get length of string (use Len function)
Set return value of function to True (assume string will be OK)

If empty string (length = zero) then
do nothing (function will return True)
Else
For each character in the string (use a For loop with counter from 1 to length of string)
Get the character (use Mid function with counter to point to the character in the string)
If the character is <’A” or >"Z” then
Set return value of function to False
Make early exit from For loop

End If
Next (next character in string)
End If
Test No | Data Reason for test Expected result
1 Empty string Can code cope correctly with True
empty string?
2 Single character Smallest non-empty string.
A Z Alphabetic, at boundaries of True in each case
alphabet.
a z As above, lower case. True in each case
1 Not alphabetic. False
3 The full alphabet All 26 alpha characters
ABCD...XYZ True
abcd...xyz True
4 1 “ £ (toprow) Other non-alpha characters on False in each case.
<>,.7/ keyboard.
etc... Test each one singly.
5 A1 Mixed alpha and non-alpha. False in each case
1A Valid char at each end of string,
B2 and non-valid char at each end of
1B string.
6 String with spaces Will a string with spaces be What do you think will happen
in: allowed? here? Is the space character
This and that in the range A-Z? See if you
can work out how to cater for
spaces as well as alphas.

Fig 3.7.1 Suggested logic and test plan for mylsAlphabetic function
See Appendix H.2 for a list of string functions.

See Appendix F.3.3 for the format of FOR...NEXT loops.

VBA Starting v5-1.doc Page 67 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 3 — Using event code on forms — miscellaneous

3.7.9 Check for existing bookings (prevent double bookings)

The booking form shown in Unit 16 of McBride will allow double bookings. Using the DCount or DLookup
function, put code behind a Confirm Booking (create using Wizard Save) button on the form to check
the Booking table to see if there is already a record for the same Room/Hall/Court on the same date
and at the same time. If so, then display a suitable message and cancel the booking. If not, then
display a suitable message and make the booking.

The query shown below may help you to understand what to do.

*®

Booking Mo
RoaomfHallCaurt
MemberClass

g=! GSYBA Exercise 3-7-9 : Select Query

=10l

Membership Mo
Class Mo
Dake
Time
-
K1 _'I_I
Field: |Booking Mo RoorHallf Court Diake Tirme 1=
Table: |Bookings Bookings Eiookings Bookings I
Sark:
Show!
Criteria:

ar:

[Forms]![Bookings]! [RoomfHall{Court]

[Farms]![Bookings]! [Date]

[Forms]![Bookings]! [Time]

3.7.10 Show booking history information per member

It could be useful to show some booking history information on each member record, such as:
e Date of last booking (use DMax, as this will select the maximum date of booking).
e Total bookings member has made (use DSum).
As you want to show these values for each member record, put the code in the Form_Current event.

VBA Starting v5-1.doc

Page 68

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

PART 4 — USING EVENT CODE ON FORMS — MENUS

REVIEW OF PART 4:

In this part of the Trainer you will see...
e ...how to create and use a non-switchboard Menu.

e ...how to show a dynamic date and time on the menu, using built-in functions.

e ...some useful form format properties.

e ...how to open a database with a specific form and how to suppress the appearance of
the database window.

e ...commands to exit an application and Access, just exit an application, close a form.

e ...some information about Control Tips and Accelerator Keys.

e ...how to create and use a sub menu to open a form in different modes.

e ...how to use the form InsideWidth property to change the size of a form when loading.

e ...how to filter records via a menu.

See Appendix | for details about the Forms Collection.
See Appendix H for details about Access built-in Functions

4.1 Introduction

For a ‘real’ application, you would not normally expect the user to access forms, reports, queries, etc
via the Access database window, but would provide menus. The user does not want, and does not
need, to know the names of forms, tables and the like. The user simply has tasks that he/she wishes
to perform and it is the developer’s job to design and implement a system to assist with that process.
You would normally design your menus as part of the full form and report design, prior to
implementation. Here, for demonstration reasons only, things have been done piecemeal.

This Part of the Trainer will discuss how to create a non-Switchboard menu (it is much more flexible to
create menus yourself), and some useful features.

The Membership form used so far has the buttons for View, Add, Edit, Delete etc on the form itself,
and the user stayed with the same form in view for all maintenance operations. This form would
normally be called from a Main Menu.

An alternative method used is for the Main Menu to call a Sub Menu which has the various operations
on it. This Sub Menu may still use the same form (when all fields are to be on view) or may call forms
with just a selection of fields available.

4.2 Creating and Using a Main Menu

4.2.1 Starting a menu — heading, dynamic date & time, day of week

Do the following:

e Open a new form in design view, without specifying a table or query. The form presented will not
be very big, so you may want to resize it.

o Create a label called IbiHeading on the form with a temporary caption such as ‘Heading’. Select an
appropriate font and size. In the Form_Load event write the code to put the value for the Chelmer
Leisure Centre name in the label (see section 2.2.1). Use the UcCase built-in function (see Appendix
H.2) if you want the text to show as upper case.

e Save the form as Chelmer Leisure Menu.

VBA Starting v5-1.doc Page 69 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

It is good HCI to show today’s date and time on a form. The day of week may also be useful. Do the
following:

e Create two unbound text boxes on the menu form, delete both labels, and name the fields as
txtDateTime and txtDayOfWeek.

o Create a Form_Timer event and insert the following line of code
txtDateTime = Now() ‘ put date and time on menu — uses Access Now built-in function

A timer event is activated automatically after a set interval, specified in the form TimerInterval
property. In the Form_Load event, add the following line of code

TimerlInterval = 1000 1000 milliseconds = 1 second — to update time on menu
The time on the menu will now be updated every second. Look at the form in view mode to see
this. You could also set this value directly in the form property box (event tab).

e To display the day of week code the following line in the Form_Load event (or in the Form_Timer event

if your application runs over midnight!):
txtDayOfWeek = WeekdayName(Weekday(Date), , vbSunday) * put today’s day of week on menu

0 Weekday is one of Access’s built-in functions and returns the day of week number (Sunday = 1
to Saturday = 7) for the given date. Here the code is using the system date, obtained via the
Date built-in function

0 WeekdayName is another built-in function and uses the day number of the system date (here
returned by the Weekday function) as one of the arguments. The built-in constant vbSunday is
used to specify the start day of week (if you miss this off then the result is one day out).

0 The weekdayName function was not available in Access 97; you would have had to code this for
yourself, using Weekday and checking each of the seven possible values that it should return.

o Look at VBA Help and Appendix H.1 to see details of the functions and how they work. The
various built-in weekday constants are listed in Help as well. Use the Debugger Immediate
Window to experiment and see what results the functions and constants will return.

The date, time and day of week will now display on the form and will be updated every second. Use
the field properties to change the way these fields display (BackStyle, SpecialEffect, etc). Set the Locked
property to Yes as these are not fields into which the user will be allowed to enter data. See Fig 4.2.2.

With Access 97, the timer interval interfered with the ApplyFilter Method of DoCmd, causing run-time

error 2491; you had to turn the timer event off then turn it on back again afterwards to avoid the error.
This problem appears to have been fixed for Access 2000/2002.

4.2.2 Improve the menu appearance.

Open the Menu form property box and change the settings as shown in Fig 4.2.1.

Property Setting Meaning

Caption Main Menu This replaces the default caption in the blue bar at the
top of the form.
If you wanted to set it to the value in myconChelmerName
you would have to code this in the Form_Load event.

Scroll Bars Neither Removes the horizontal and vertical scroll bars.

Record Selectors | No Removes the P>record indicator from the form .

Navigation No Removes the Access buttons from the bottom of the

buttons form.

Dividing Lines No Prevents the lines that separate the various sections of
the form being shown on the form.

Auto Center Yes Form will display in the centre of the screen when
loaded.

Border Style Dialog Changes the edges of the form, so that it looks more
like a dialog box.
It also prevents the form from being resized.

Min Max Buttons | None Removes the min/max buttons controls from the top
right of the blue bar at the top of the form.

Close Button Yes (for now) Shows the Close button control at the top right of the
blue bar at the top of the form.

(see section 4.2.5) Set this property to No to disable (grey out) the close

button).

Figure 4.2.1 Some Form Property Box Settings

VBA Starting v5-1.doc

Page 70 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus
4.2.3 Command button to load a form

Now create a command button to open your Membership form. There is a command button wizard for
this; choose to open the form showing all records. Use suitable text and field names for the button,
e.g. ‘Membership Maintenance’ and cmdMembershipMtce. If you click on this button, the Membership
form is loaded. You now have a very simple menu. That is all a menu is, loading forms or reports etc
from buttons.

Finally, add the following line to the menu Form_Load event cmdMembershipMtce.SetFocus
This will move the focus to this new command button, rather than the day or time field on the menu.

Your menu should now look something like that shown in Fig 4.2.2.

x

Saturday Z8[0&8/2004 14:45:06

CHELMER. LEISURE AND
RECREATION CENTRE

| iMembershin Maintenange I

Fig 4.2.2 simple Main Menu showing heading, date, time
and command button to open Membership form

4.2.4 Open menu automatically on start-up

From the Database Window, go via Tools 2Startup and change the settings in the Startup dialog box
as follows:

e Select the Main Menu from the Display Form box.
o De-select the option to display the database window

Now close and reopen your database. Your screen will now show just the menu, in the centre of the
screen. (Simply re-select the database option window whilst developing your system, if wanted).

See section 7.6 for a fuller discussion of Startup options.

4.2.5 Exiting the application

The user can close the menu by clicking on the ‘close’ box on the top right-hand corner of the menu.
However, this will not close the database or Access. For the final version of the system (as distributed
to users) It would be better to have a command button for the user to use to exit; then this will be
entirely under your control. So, do the following:

o Create a command button to quit the application (there is wizard for this). Give it the text ‘Close
Menu and Exit’.

« This button will close Access as well as the database, which can be rather a nuisance when
testing and amending code, so you may like to comment out the line

DoCmd.Quit
and code

CloseCurrentDatabase ‘closes application but not MS Access
or DoCmd.Close ‘closes form only

e On the Format tab of the form property box, set the Close Button property to No.

VBA Starting v5-1.doc Page 71 Version 5.1 — July 2005

VBA Trainer - Getting Started

4.2.6 Control Tips

Part 4 — Using event code on forms — menus

Control Tips are a very simple, but very useful, feature to aid the user, especially for command
buttons that have pictures rather than text. Do the following:

e Open the property box for the Membership Maintenance command button.

e Click on the Other tab and find the entry for ControlTip Text. Enter a description such as

Add, Edlt, Delete and View Membership Details 1'

¢ Now, when the user positions the cursor over
the button, the description will appear as a
pop-up box. See Fig 4.2.3.

You can also set the Control Tip Text via VBA:
cmdMembershipMtce.ControlTipText = “text”

Control Tips can also be used with other form
objects; look at the property box.

Close Menu
Saturday 23710/2004 11:31:45 and EXit

CHELMER LEISURE AND
RECREATION CENTRE

Record Class
Attendance
Add, Edit, Delete and Yiew Membership Details

Run ‘Members before date' report |

Fig 4.2.3 Control Tip Text for a command button

4.2.7 Accelerator Keys

So far, the mouse has been used to point to fields, click on buttons and the like. But what if the mouse
became faulty? How would the user be able to continue, or at the very least, be able to close down
the application? Accelerator keys are an alternative to using the mouse. Do the following:

e Open the property box for the Membership Maintenance command button.

e On the Format tab, change the cCaption by adding an & before the M of Membership, so that the

Caption NOW reads &Membership Maintenance

e The button will now show an underline character under the M of Membership, i.e. Membership

Maintenance in both design and form view.

o If the user presses the M (or m) key, the effect will be the same as clicking on the button, i.e. the

Membership form will be loaded.

The accelerator key does not have to be the first key of the caption. Try putting an & before the X’ of
Exit on the close form button, so that the Caption now reads Close Menu and E&Xit. See Fig 4.2.3.

Each accelerator key must be for a different letter, or the results may not be what you expect!

4.3 Data Maintenance via a Sub Menu

This section discusses the changes that need to be made to your current Membership form, and then
puts all these ideas together to show how the maintenance functions now work via a sub menu.

B Membership Maintenance Menu : Form

4.3.1 Create asub menu

To create a sub menu, do the following:

e Open a new form in design view, without
specifying a table or query
e Set up suitable main and sub headings.

¢ Remove scroll bars, close button, etc (see Fig
4.2.1)

e Save it and call it Membership Maintenance
Menu. See Fig 4.3.1 (but note that this has
buttons that you have not created yet).

VBA Starting v5-1.doc Page 72

CHELMER LEISURE AND

RECREATION CENTRE
Maintain Membership Details

Edit Details | add Member |
Yiew Details | Delete Member |

Fig 4.3.1 example sub menu

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus
4.3.2 Exiting from the sub menu

Add a wizard button to return to the Main Menu:
e Using the wizard, create a button to close the Sub Menu

e Open the code module for your Main Menu, and change the line in the cmdMembershipMtce_Click

event that says
stDocName = “Membership” previously loaded Membership form

to
stDocName = “Membership Maintenance Menu” now loads sub menu
e Open your Main Menu in form view, click on the Membership Maintenance button, and your Sub
Menu will open. Click on the Return to Main Menu button and the Sub Menu form will close and
you are returned to your Main Menu.

4.3.3 Amend Membership form

The Membership form that you have at present has got Add etc buttons on it already. These will not
all be necessary if it is to be called via the Sub Menu. The following tasks are fiddly, but are good
practice as this is the sort of thing you will need to do if you want to re-use a form (or a report) and
adapt it for a new situation (and will also check that you have understood what you have been doing
so far). Do the following:

e Create a new version of your Membership form. Call it SubMembership.

e Open your SubMembership form in design view, and delete the command buttons for View, Edit
and Add. Leave the Delete button where it is but set the Visible property to False.

e Open the form in form view. You will get a compilation error message as your code will be trying
to change the forecolor for a non-existent command button. Edit the module code to remove all
references to, and event code for, the deleted buttons for View, Edit and Add. Leave the main
code for Delete (you will use this later) but remove the changes to the forecolor.

(Tip: use Edit>Find)

¢ Once you have done this you will get a run-time error in the Form_Current event DLookup statement
trying to reference the form “Membership” (see section 3.2.4). The form is now called
“SubMembership” so you will need to change the reference in all uses of the forms collection.
(Tip: use Edit2Replace — but be careful not to change references to the Membership table!).

e The forecolor on the three remaining buttons is white. You may wish to edit your code to leave this
as black, e.g. remove procedures mySetToViewMode and myResetButtonsToOff, as the button colour (or
format, if you have used label-buttons etc) is not relevant now.

o A simpler course of action could be to remove all code within myResetButtonsToOff and leave the
rest unchanged.

e Remove all code that amends the form AllowEdits property, with the exception of the ‘Find’ combo
box GotFocus and LostFocus events and the coding for the various filters from sections 3.5 and 3.6.

e Try opening your form. It should now show just the Save, Next, Previous and Close Form buttons.
See Fig 4.3.2.
o If you have done the exercises in section 2.3.6 to provide facilities to change address and
renew membership, then these buttons will also show. Leave them as they are.

e The following sections will show how to replace the deleted functions with operations from the
Sub Menu.

4.3.4 Editing Membership records

e Using the wizard, create a new command button on your Sub Menu, to open your new
SubMembership form showing all the records. Give it a suitable caption and name (e.g. Edit
Details and cmdEdit). See Fig 4.3.1.

e Change the generated code for the OpenForm command from

DoCmd.OpenForm stDocName, , , stLinkCriteria
to
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormEdit

o Use the VBA Help system to look at the details of the OpenForm method. The extra parameter

added to the command is specifying the datamode in which the form is to be opened.

VBA Starting v5-1.doc Page 73 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

Open your Sub Menu in form view, click on the Edit Details button, and you will see the first
record in your file. You can amend this record and save it. You can also use the Next/Previous
buttons, or your ‘find’ combo box to locate records. The filters should also still work.

Post Code

Telephone Mo |D1 77 BEIZ3E

Sex 1 R
Tick for
Smoki I~ & Male smoker r Filter overdue
Sporting Interests Maker = Female 1enewals

e
Chelmer Leisure and Recreation Cenfre FindName [waker = Eoxe
. . Clear all E1
Membership Details 21 members | filters
tembership Ho Eazier:afi:; character(s) of Enter joining date
Title: m Firstharne |And|ewJ Lastname [Walker I I
Filter By Name I Filter after join date:
Street |1 E Dovecot Cloze Occupation IEuiIdar
Enter sporting interest
Town [Fheimer Dateof Bith, | 12/031952 Age Save | Select Category Type
County IEhEShirE Category Mo I 2 [Senior Club | = I

ICHZ ETR Filter By Cateqorny I Filter Soorting Interest

Renew
Membership

Change
Address

Tenniz, Squash

Filter Smokers I

Select Town

Date of Jaining I 03/02/1992 PI;?:‘:EL:; | Mest Frecord
D ate of Flenewal I 27/08/2004

Filter by Town I

Fig 4.3.2 Possible Membership form prepared ready for use from Sub Menu

4.3.5 Viewing Membership records

In exactly the same way as above, create a new button to open your new SubMembership form.
Give it a suitable caption and name such as View Details and cmdview. See Fig 4.3.1.
Change the generated code for the OpenForm command to
DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormReadOnly
If you click on this button, your form is opened, but you cannot edit any data field, as the AllowEdits
property has been set to False; that’'s what the built-in constant acFormReadOnly does.
0 However you can still use the ‘find’ combo boxes and the filters, as your coding already
adjusts the AllowEdits property when the cursor is positioned on these controls.

4.3.6 Adding new Membership records

As before, create a new button to open your new SubMembership form. Give it a caption and
name such as Add Member and cmdAdd. See Fig 4.3.1.

Change the generated code for the OpenForm command to

DoCmd.OpenForm stDocName, , , stLinkCriteria, acFormAdd
If you click on this button, you are presented with a ‘blank’ form and can enter new details. The
Save button will save the form. Clicking on the Next button will move to another blank form, so
that you can enter more than one record if wanted. Clicking on Previous will show you the records
that you have added so far this session; it will not show other records in the database.

Clicking on the ‘Find’ combo box will have no effect, as this action is not appropriate to adding a
new record. However, the Filter buttons will still work, which may or may not be what you want to
happen.

4.3.7 Deleting existing Membership records

If you look at the allowable datamodes on the OpenForm command, you will see that there isn’'t one
for Delete, as this is assumed to be part of Edit (i.e. changing the dataset includes removing data as
well as merely amending it).

Two possible ways of allowing for deletions are:

o Allow the user to delete records via the Edit button.
...0r...

o0 Create a Delete button on the sub menu. Have a hidden field on the sub menu, and put
‘Delete’ in here. In the SubMembership Form_Load event, if the form has been opened from the
Delete button, set the button property Visible = True.

VBA Starting v5-1.doc Page 74 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

4.3.8 Trythis: (See Figs 4.3.1 and 4.3.3)

In this section you will try out some of the ideas discussed in sections 4.3.1 t0 4.3.7.

Create a hidden unbound text box (Visible property set to No) on the Sub Menu, delete the label.
Give the text box a suitable name (e.g. txtAction). For each of the maintenance buttons on the Sub
Menu, add appropriate text to this field, e.g. for Add button, put “Add”:

txtAction = “Add” ‘put sub menu choice in hidden field on this form
o0 Use of ‘hidden’ fields on a form is a standard technique to pass information between forms.

Create a text box on the new SubMembership form, in the heading. Give it a suitable name (e.g.

txtAction) and suitable display properties. Delete the label. In the Form_Load event code:
txtAction = Forms![Membership Maintenance Menu]![txtAction] ‘copy choice from hidden field on sub menu

o Even though these text boxes have the same name, Access can work out which is which. If
you prefer, you can use different names.

o This will show the action in the form header as information (and a reminder) to the user. You
may like to change some of the appearance properties for this box, for example, try setting
the BackStyle to Transparent and the SpecialEffect to flat. Set the Locked property to Yes. Change the
font to suit. Try choosing an option from your sub menu and see the effect in the
SubMembership form header.

Using the property boxes, set the Visible properties for the Delete and Save buttons on the
SubMembership form to False.

If you have implemented the Change Address and Renew Membership buttons from Exercise
2.7.1 then set the visible properties for these to False.

In the Form_Load event for the SubMembership form, enter code (possibly using a CASE
statement) to do the following (test each bit out as you do it — this will help with debugging if you
make a mistake):

o Ifthe action is Edit:
= Make the Save, Renew Membership and Change Address buttons visible.

o If the action is Add:

= Make the Save button visible.

= Disable/remove any ‘Find’ combo boxes (set the Enabled or Visible property to False).

= Make the number of records invisible.

= The various filters to the right-hand side of the form are not relevant when adding records,
but it is possible to resize the form to hide these buttons. Look up the Insidewidth property
in VBA Help. If you code MsgBox InsideWidth in the Form_Load event, you will see the value
that applies to the full-sized form. So, for the Add action, code something like

InsideWidth = 11500

(you will need to experiment to find an appropriate value for your form, and you may need
to move some controls around on the form that the relevant ones can be seen).

o If the action is Delete:
= Make the Delete button visible

In the Form_cCurrent event, code the following:
If txtAction = “View” Or txtAction = “Delete” Then

Me.AllowEdits = False ‘to set to view mode”
End If

Now try all the buttons on the sub menu and see how it all works together. See Fig 4.4.3.

VBA Starting v5-1.doc Page 75 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

E3 Membership

31 x|
Chelmer Leisure and Recreation Centre FindName fwaker =]
- . Clear all
Close Membership Details s |
Form -
Edif 21 members
Membership No Ear;:er:af::échalacter[ﬂ of Eniter joiring date
Title: Im Firstname IAndrewJ Lastname IWaIKeI I
Filter By Mame | Filter after join date I
Street 16 Dovecat Cloze Occupation IBuiIder
Enter sporting interest
Ve Chelmer Dats of Bith: | 12031952 Age Save | SitER CHERY TR
County Cheshire Category Mo 2 [Senior Club I ;ll I
Post Code CHZETR Filter By Cateqory Filter Sporting Inkerest I
Renew Previous
Telephone Ma 01777 569236 Sex Membership Record
Tick far
& Male r Fiker overd
I smoker her overdus
Spoiting Interests Smoker W Faiels g’&‘;’[‘gg Mext Record tenewals
- Filter Smokers |
Tennis, Squash —
Drate of Jaining 03/02/1932 Select Town
Date of Renewal 27/08/2004 I :|'
Filker by Tawn
B Membership] 5
Chelmer Leisure and Recreation Centre
Close Membership Details
Form
Add
Membership Mo | [AutaMumber]
Title: | Firstname | Lastname I
Street Occupation
Town Thelmer Dateatih [dge [] save |
Cunty [N I e—
Post Code
Previous
Telephane No Sex Recard
& Male
3
Sporting Interests Szl & Femals Mext Record
[rate of Joining 28/08/2004
Date of Rengwal 26/08/2004

Fig 4.3.3 SubMembership form in Edit and Add modes.

4.3.9 Opening the form with a particular record

In the above sections, the form is opened giving the user access to the full set of membership
records. This may not be what is required; you may wish to open the form only for records with a
particular surname or membership number (the latter for example if you are simulating swiping a
membership card — you cannot expect members to remember their numbers).

In section 4.3.4 you were instructed to open the form with the ‘show all the records’ option. If you had
opted for the ‘find specific data’ option Access would have refused to do this as there are no linkable
fields between the forms; the Sub Menu did not contain any appropriate text boxes to use as a link. If
you look at the code for an open form button, you will see that there is a variable named stLinkCriteria,
but this is not used. In order to open a form for, say, a particular surname, do the following:

e Create an unbound textbox on the Sub Menu form, call it txtName and set the label text to ‘Enter
last name of required member’.

e Add the following line before the DoCmd.OpenForm statement of the View button:
stLinkCriteria = “[Lastname]="" & [txtName] & “”

o This is the code created by the wizard if you choose the ‘find specific data’ option.
(Note that " after [Lastname] is ‘ “, and “” at the end of the line is “ * “ — see section 3.5.1)
o If the name entered in txtName is Jones, the actual string that will be put in stLinkCriteria will be
[Lastname]= ‘Jones’

and this will be used as a filter to open the form only with records for all members with the last
name of Jones.

e If you want to be able to filter by all names with the same starting letters, change the code to
stLinkCriteria = “[Lastname] like ”” & [txtName] & “*”

(note “*”” at the end of the line is “ * * %)

VBA Starting v5-1.doc Page 76 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus

With the letter J, the criteria would now be

[Lastname] like ‘J*’
If the user does not enter anything in the txtName field, the form will open with all records (like *’)
as before. This may be more useful than looking for an exact match. The user will be able to use
the Next and Previous buttons to scroll through the filtered records, just as normal.

You may have noticed that the SubMembership form opens showing the full number of Membership
records, regardless of how many are actually filtered via the Sub Menu. You will need to alter the line
for this in the Form_Load event to

txtTotalMembers = DCount(“{Membership No]”, “Membership”, <4———— note continuation over two lines
“[Lastname] like” & Forms![Membership Maintenance Menu]![txtName] & “*””)

In order to use this process for the Edit and Delete buttons as well, copy the stLinkCriteria line to the Sub
Menu click events for these buttons. Better still, have a function such as that shown in Fig 4.4.4 and

add the line
stLinkCriteria = mySetLinkCriteria

to each event. Then, if you wanted to change the link criteria in future, you only need to alter it in the
one place, in the function. (See Exercise 4.4.4).

Private Function mySetLinkCriteria() as String
mySetLinkCriteria = "[Lastname] like "' & Me![txtName] & "*™
End Function

Fig 4.4.4 Function to set the filter link criteria for opening the SubMembership form

You will not need any link criteria for the Add button. It may be useful to set the count of members to 0
(zero) initially and add 1 (one) each time a record is saved (in which case put the Visible property for
the count of total members back to True).

B3 Membership Maintenance Menu : Form [Bz]

CHELMER LEISURE AND

RECREATION CENTRE
Maintain Membership Details

R.eturn to Main Menu |
Enter last name of reguired member ||
Edit Details Add Member |
Wiew Details Delete Member |

i

Fig 4.4.5 Sub Menu with textbox for Lastname filter

4.4 Exercises

4.4.1 ‘Are You Sure?’ procedure on EXxit

If the user clicks on the Exit button for the Main Menu, ask an ‘Are You Sure Question’ with a Yes and
No reply, and take appropriate actions depending upon the user response.

4.4.2 Sub Menu buttons for Renew Membership and Change Address

Instead of having the buttons for these processes on the SubMembership form, put them on the Sub
Menu. A suggestion is that you open the SubMembership form for the chosen member(s) and make

just the relevant fields available by setting appropriate properties on the other fields. Set the form
width to a value that will not show the filters, as these will not be relevant.

VBA Starting v5-1.doc Page 77 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 4 — Using event code on forms — menus
4.4.3 Show count of records added

As suggested at the end of section 4.3.9, show a count of records added in each Add action. It is
possible to add several records at a time, so it could be useful to show a count.

4.4.4 Open SubMembership form for a particular Membership Number

Using the ideas discussed in section 4.3.9, provide a facility for the user to enter a Membership No to
open just the record for that member. It might be useful to use DCount or DLookup to check that there is
a record for that Membership No first and open the form if the number is found, but display a suitable

message if it is not found.

The form now has two textboxes in which the user can enter a value, so you will need to check which
one has been used and set the link criteria accordingly.

Membership No | Lastname Action

Null Null Use Lastname criteria. This will load all records.

Null Not Null Use Lastname criteria. This will load all records where the first
character(s) match.

Not Null Null Use Membership No Criteria. If the record exists, this will load just
the one record.

Not Null Not Null Error — give message to tell user to enter a value in only one of
the textboxes.

The best place to put this code would be in the function mySetLinkCriteria (Fig 4.4.4).

445 Provide data maintenance facilities for the Stock Level table via a sub menu.

Using your Stock form from previous exercises, create a SubStock form and a Stock Maintenance sub
menu for the various data maintenance facilities. Open the sub menu from the Main menu.

Move the Receive Stock facility to the sub menu.

4.4.6 Using a System Heading in a table.

Instead of coding the system heading in a Public constant, as in Fig 2.2.3, it could be more flexible to
have a table with one row which has the system name. The user can set and change their own title
using a form. Change your code as follows:

e Create a new table (SystemHeading).
o Create a form to show only one record for the user to enter/change the heading.
e Change myconChelmerName to be a public String variable (not a constant).

e In your Main Menu and in your new form, use the DLookup function to get the heading from the
SystemHeading table and put it in myconChelmerName. The rest of your coding should now pick up
the system heading as before.

¢ Change the heading via your new form, and see the new heading in the forms and reports.

VBA Starting v5-1.doc Page 78 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 5 — Using event code on reports

PART 5 — USING EVENT CODE ON REPORTS

REVIEW OF PART 5:

In this part of the Trainer you will see...

...that reports have a code module and events.

...how to change font settings at run-time.

...how to calculate report totals.

...how to cater for ‘empty’ reports.

...how to use parameters to control the data on a report.
...how to use a calendar control for a date parameter.
...how to suppress items on a report.

...how to change the sort order at run-time.

See Appendix A for a summary of report events.
See Appendix | for details about the Forms Collection.

5.1 Introduction

So far we have concentrated on forms, but reports are every bit as important. Forms are often
regarded by students as the most important aspect of a system (and they may be the most ‘fun’ bit to
develop, if students enjoy interacting with their own code), and reports can be regarded as a bit of an
added extra and not that important.

However, management reports are vital to the running of a business. Management may not interact
day-to-day with the system (do you think that the senior Managers of the Chelmer Leisure Centre will
type in details to record a new member? Or make a booking?), but they will want to receive both
regular and one-off reports that tell them how the business is running and enable them to take
appropriate business decisions.

Members of the public also interact with systems via reports (e.g. payslips, bank statements,
insurance renewals), and students will receive computer generated fee payment demands, end-of-
year result transcripts, etc.

Reports are a vital function of most systems and it is very important that they are well-designed.

You have already seen that forms have their own code module and events. You will now see that
each report also has a module and events, and that these are accessed, and work, in exactly the
same ways as the code modules for forms.

5.2 Report of members who joined 10 or more years ago

Membership lists can get very lengthy over time, especially if lapsed members are left on the list.
Suppose that the management of Chelmer Leisure wants a report that lists all members who joined 10
or more years ago, highlighting those members whose annual membership renewal is overdue.

First create a query as in Fig 5.2.1, using (at least):
e Membership No, Title, Firstname, Lasthame
e Date of last renewal
¢ Number of years since joining.
0 Note how this uses the myCalcYears function from exercise 3.7.3 with the Date of Joining and
the system date. If you have not created that function, then use the myCalculateAge function
instead with just the Date of Joining.

You may need to amend your membership data to get a good spread of joining and renewal dates.
Don’t forget boundary conditions.

VBA Starting v5-1.doc Page 79 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 5 — Using event code on reports

g=f Member for 10 years : Select Query

Date of Reney ™

=lol =]

Field:
Table:
Sork:
Showt
Criteria;
or:

Membership Ma Title Laskname Firstname Date of Renewal ‘ears: myCalcears{[Dake of Joining],Datel))
Membership Membership IMembership Membership Membership

Fig 5.2.1 Query to select members who joined at least 10 years ago

Now create a tabulated report, based upon the query, to list the members in descending years order;

See

Fig 5.2.2.

e The heading for this report is a label with just some temporary text in it (such as ‘heading’). It has

been given the name IbiHeading. The code:
IbIHeading.Caption = myconChelmerName

has been coded in the Report_Open event to put the text from the public constant in the report

heading. Compare this with the similar action for putting the heading on a form, in section 2.2.1.

Some joining and renewal dates of data have been changed for this report.

= Member for 10 years

Chelmer Leisure and Recreation Centre

List of Members who joined 10 or more years ago

Membershlp THe Lasinams
[

20 Mr Jones
Mre Cartwaricht
Miss Locker
Mr Locker
Mrs Robinzon
Mz Young
Mr Shanoali
Mizs Jameson
Mizz Forsvthe
Mr Wialker
Mr Ewerett
Mr Harris

12 Seplember 2004

Page: I<|< I 1]k >I|

Arsname

Edward R
Denize
Alisan
Liam
Rehecca
Aileen

Itm ran
Donra
Ann M
Ancrew J
Alan
Doavid J

Cats of ‘W ars sines
Feng wal pining
171051 996
16072004

130601 957

130601 997

O6M 21 996

0908 996
130952003
1110952003
120852003
27I0&2004
05M11 996
01021 997

=101

Fig 5.2.2 Basic report of members who joined 10 or more years ago.

VBA Starting v5-1.doc

Page 80

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 5 — Using event code on reports

5.3 Changing the appearance of a field at run-time

Management wants the report to highlight members who have not renewed their membership, i.e.
where the date of Renewal is more then a year ago. Do the following:

e Open the report in design view and create event code for the Detail_Print event.

o Enter the code shown in figure 5.3.1 in the Detail_Print event. This code uses the myCalcYears
function to check for renewal dates over 1 year ago (i.e. 2 or more years ago).

¢ Run the report. The lapsed members have their date of renewal highlighted in bold, red ltalics.
See Fig 5.4.1.
0 You have seen in section 2.4.1 how to use the colour constants and/or the RGB function to
change font on forms; the method is exactly the same for reports.
o Note that you must code for both lapsed and non-lapsed conditions, as the formats you set
will apply for all later records unless you change them. Try removing the ELSE code and see

the effect.
Private Sub Detail_Print(Cancel As Integer, PrintCount As Integer)
'highlight members whose annual membership has lapsed
If myCalcYears([date of renewal], Date()) > 1 Then
[date of renewal].FontBold = True ‘highlight if lapsed
[date of renewal].Fontltalic = True
[date of renewal].ForeColor = vbRed
Else
[date of renewal].FontBold = False ' normal if not lapsed
[date of renewal].Fontltalic = False
[date of renewal].ForeColor = vbBlack
End If
End Sub
Test no | Data Reason for test Expected result
1 No lapsed members in member No lapsed members. All in normal black font.
table
2 All members have lapsed All lapsed members. All in bold, italic red font.
3 Mixture of lapsed and non- Mixture, to test fonts Mixture of fonts*
lapsed members, alternating correctly reset.
through the report.
4 As test 3, but first and last As test 3, to show that As above.
members listed now have first/last values do not
different status. affect the result.

* work out in advance which records you expect to show as lapsed.

Fig 5.3.1 Code to change the font at run-time, and suggested test plan.

Testing a report is very different to testing objects on a form, as a whole set of data values are
normally processed at once, though it can sometimes be useful to have several versions of a table,
each with one row, just to test one particular condition. If you have a table with several rows, it is
useful to list the table in with your test plan and log, highlighting the tests for each row (in this
example, highlighting those members whose membership has lapsed) so that you know in advance
what your expected result is.

Note that it is also possible to use Conditional Formatting for this task, but the number of options is
limited. Code is more flexible.

VBA Starting v5-1.doc Page 81 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 5 — Using event code on reports

5.4 Calculating and printing totals

It is always good practice to print totals in a report footer (and, indeed, in group footers). Suitable
totals here would be of all members and lapsed members shown on the report. Do the following:

Open the report in design view and add two text boxes to the report footer (extend the area if
necessary). Change the label captions to ‘Total members lapsed’ and ‘Total members printed’
and the textbox names to txtTotalLapsed and txtTotalPrinted.

Create code for the ReportHeader_Print event. Add lines to initialise the totals to zero, e.g.

txtTotalPrinted = 0 . This will put the values in the textboxes to zero initially.

o The logical place to put this code may seem to be in the Report_Open event, but you get the
error ‘You cannot assign a value to this object’ if you do this. Access does not allow values to
be put in textboxes in this event.

Go to the print event for the detail lines (Fig 5.3.1) and add code to increment the counts by 1 in
appropriate places. For example, add txtTotalLapsed = txtTotalLapsed + 1 to the code inside the IF
statement where the font is set to bold, red Italics and code the equivalent for the total printed
outside the IF statement. Your report should now look similar to that shown in Figure 5.4.1.

Not all report counts have to be coded; Access Help has very clear instructions on the standard
counting facilities that exist for creating report and group totals. See Access Help with the keywords
report; total, also McBride Unit 24. You will often need to count a selection of items in a report (e.g.
the total of lapsed members above), and it is often best to code these totals; it may not always be
possible to do them via the standard Access facilities.

=T

Chelmer Leisure and Recreation Centre

List of Mem bers who joined 10 or more years ago

Mem bership Ti1e Lastname Arshams Cats of ‘faars since

Ho Renswal Pining
20 Mr Jones Edward R T705/7996

Mrs Cartwioht Denizs 16072004

Miss Locker Alizon T306/7997

Mr Locker Liam 1306/7997

Mrs Robinson Rebecca 06/72/7996

Mz Young Aileen 09/08/7996

Mr Shanoal Imran 130952003

Mis= Jameson Donna 110842003

Mizz Forsvthe Ann 1200902003

Mr o wWalker Ancrew) 27082004

hr Ewerett Alan 05/71/1996

wr Harriz David J 01027997

Totd merbers printed: 12 Totd members laosad: 7

12 Zeplember 2004

page: 14| [1t o]
Fig 5.4.1 Report showing highlighted dates, plus counts

Run the tests from Fig 5.3.1 again, checking that you have the correct highlighting as before, and that
you now have the correct totals for each test.

VBA Starting v5-1.doc Page 82 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 5 — Using event code on reports

5.5 Empty Reports

What if there was no data to be printed? You can see what happens by changing the data in your
Membership table so that all the joining dates are within 10 years, or (probably easier!) changing your
query on which the report is based to select members who joined 20 years ago (or whatever figure will
ensure that the query does not return any results).

Now if you run your report there will be a run-time failure ‘You entered an expression that has no
value’ as your code is trying to check dates on non-existent data when calling the function myCalcYears.

This report only fails at this point because the code checks non-existent data. If this check were not
there, the report would run but the results may not always be that clear.

Obviously you want to avoid a run-time failure and you want to make it clear on the report that there is
no data to be listed.

5.5.1 Using the Report_NoData event and cancelling the report.

Create code for the Report_NoData event and enter the following code:
myDisplayWarningMessage (“There are no members to print”)
Cancel = True

Now run the report. The message appears and the report is cancelled.

(To test that the report still works correctly with at least one record, amend your query or data
accordingly and test again. You should get your report with the record(s) shown).

5.5.2 Printing an ‘empty’ report

In some cases, merely reporting via a message that there is nothing to print may be sufficient, but in
many cases (for example regular reports) it is essential to print an ‘empty’ or ‘null return’ report. If a
regular report is missing how is the user to know whether it was because there was nothing to print or
whether the report had been mislaid?

Do the following:

e Declare a global variable in the report module called bNoData, of type Boolean. This will be used as
a flag, to be set to True if there is no data for the report to print.

¢ In the Report_NoData event, delete the line to cancel the report and add the line:
bNoData = True

e In the Detail_Print event, top and tail your code with:
If bNoData Then
‘do nothing — the Detail_Print event appears to be invoked even though there is nothing to print!
‘ so we must prevent the code here attempting to process nothing and then failing at run time.
Else
existing Detail_Print event code goes in here
End If

Your report will now print showing totals of zero.

However, the Report_NoData event now appears to be called twice (I don’t know why), which means that
the message will be shown twice. You could therefore move the message to the Detail_Print event,
which is only called once, or simply, do not show the message — that is probably easiest.

It might be better if your report stated explicitly that there were no records to print. Add another text
box to your report footer. Delete the label. Call the box txtNoDataMessage. Use the property box for this

new field to set the field to invisible initially. Add the following code to the Report_NoData event:
txtNoDataMessage = (“There are no records that meet the criteria”)
txtNoDataMessage.Visible = True
txtTotalPrinted.Visible = False
txtTotalLapsed.Visible = False

Now, if you run the report with data, the report will look the same as before. If you run it with no data,
the totals will be replaced by the message “There are no records that meet the criteria”.

VBA Starting v5-1.doc Page 83 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 5 — Using event code on reports

5.6 Using a query criteria parameter at run time

A more useful version of the report could be to allow the user to enter a date, rather than assuming a

date 10 years before the run date. Do the following:
Create a new form, not based on a table or query.
You could use a textbox for the date, but here we will
use an alternative version, a calendar control.

o0 Using the Insert menu, add a calendar control to
your form and move it to a suitable position.

o See Fig5.5.1.

o Give the control the name ocxCalendar.

o If you look at the calendar value property, you will

see that it is set to the date that you created the
control, and this date is selected when the form is
opened. If you want it to change to show a different
date when the form is opened, then you will code
this in the Form_Load event:

ocxCalendar.Value = Date() ‘today
Oor ocxCalendar.Value = #1/1/2004# ‘specific date
If you want to remove this value, you can do it via
the property box or code ocxCalendar.Value = Null

The BorderStyle property here is set to Dialog. Note that there
are no max/min buttons and that the form edge is flat.

You may also find the Popup and Modal form properties of
use.

Copy your ‘members for 10 years’ query and create a new query, which compares the Date of

Joining with the date in ocxCalendar, using a Forms Collection reference (see Appendix I), as in Fig
5.5.2. This query uses a copy of the Membership table, as the joining dates have been changed

to test the report.

gz Members before date : Select Query

2 [pamt] Famet 1ok W
Select an ActiveX Contral:
elect an Activer Control Page Ngmbers...
ActivePlugin Object |
ActorBur Class = | Cancel Date and Time. ..
adbanner Class -
Adobe Acrobat Contral far ActiveX
AOLUK. LiserControll W chart..
Application Data Contral X
AorListiiewCtrl Class Picture. ..
LCalendar contral 10,00
CODBACLContral Class Object, -
. |CODECantrol Class —
CerberusCDPlayer Class LI % ActiveX Control
[~Result "
| Hyperlink... Chrl+K
Inserts a new Calendar Contral 10,0 inta your dacument. % YRE
T = = T
B Members Before Date x|
Sep 2004 Sep +| [2004 'I To run the report,
= please choose a
Meon | Tue | Wed | Thu Fri Sat | Sun | date from the
30 31 1 2 3 4 S
calendar.
| i | i v Select the month
13 e [1s s [z e |a and vear first, and
I] 22 (23 (24 |25 (= then the day.
5 e s & B 5 The report wil run
after the day has
S R) N A been chosen.
Fig 5.5.1 Creating a Calendar Control
_loj x|

Field: | Date of Renewal

embership Mo x I Title Lastname Firstname

Wears: myCalcYears{[Date of Joining],Datel)

Date of Jaining

=hip Noj
Table: mbership For 104 Membership for 104 [Membership for 104 |Membership For 104

Membership For 104

Membership For 10 years repart

Sort:

Shaw:

Criteria:
or!

<[Forms]![Members Before Date]![ocxCalendar]

Fig 5.5.2 Query changed to reference date control on form.

Make a copy of your ‘member for 10 years’ report, and change the RecordSource property to use the

new query. Now, if you select a date on your new form and then run the report, you should see

how it all works together.
o}

But the report heading needs changing. To do this, give the name IbiISubHeading to the

subheading on the report, change the caption text to “List of members who joined before ,

and add the following line to the Report_Open event:

IbISubHeading.Caption = IbISubHeading.Caption & Forms![Members before date]locxCalendar.Value

0

If you wanted the date to show in a different format, you can use the FormatDateTime function:

= IbISubHeading.Caption & FormatDateTime(Forms![Members before date]locxCalendar.Value, vbLongDate)

The calendar AfterUpdate event is invoked when the day number on the calendar is chosen. This

could be a suitable place (other than using the usual command button) to run (preview for now)
the report. Create this event and add the following line of code:

DoCmd.OpenReport “Members before date”, acViewPreview

o Alternatively, use a command button to open the report.

following after the line to open the report:
DoCmd.Close acForm, “Members before date”

VBA Starting v5-1.doc Page 84

If you wanted to close the parameter form when the report was opened, then simply code the

You could now add a button to your main menu for the report, which opens the parameter form.

Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 5 — Using event code on reports

5.7 Changing the sort order at run-time

The user may wish to see the same report in several different orders. Usually, we create a report with
a built-in order, either by specifying an order for the underlying query (though this doesn’t always
guarantee that the report order is the same!) or by using Sorting and Grouping in the report design.

But it is also possible to set the relevant properties in the
Report_Open event. Figure 5.7.1 shows the report property box
and the values set for the OrderBy and OrderByOn properties.

Look these up in Access or VBA help (the same information

appears to be in both).

x
IReport j

Format ~ Data |E\-'ent | Other | All |

Record Source ... u Mernbers before datel b |

Mo
Order By o oo

Order By On . oo vu v es

Fig 5.7.1 Report properties showing sort order at run-time

If you have used Sorting and Grouping to specify a default report order, or have specified the order
when creating the report via the Report Wizard, then this order will over-ride whatever you will code.
You will need to remove this sort order first (highlight the row in the Sorting and Grouping dialog box,

and press Delete).

Now create two combo boxes on your
parameter form, for the user to specify the fields
for the sort order, and whether the order is to be
ascending or descending.

¢ Note that the names of fields with spaces in
them must be enclosed in [].

¢ Note how to specify two fields in an order.

e Set the default values (via the property
boxes) to be one of the set values.

e Set the LimitToList properties to Yes.

e SeeFigh.7.2.

e |t would be wise to add a validation for the
first combo box, to ensure that the user
does not leave this field Null.

B9 Members Before Dakte

Choaose the arder in which vou want the report contents ta be sorked

[Date of Renewal]
[Membership Ma]
[Lastname], [Firstname]

Unique identifier For member
Mernber name

Date member lask renewed membership

Sep 2004 ISep | |2004 4|
Mon | Tue | Wed | Thu Fri Sat Sun

30 el 1 2 5] 4 53

G 7 g 9 10 11

13 14 15 16 17 18 19

20 b 22 23 24 25 26

27 28 29 30 1 2 Bl

4 gl =) T g g 10

To run the report,
please choose a
date from the
calendar.

Select the month
and year first, and
then the day.

The report will run
after the day has
been chosen.

Fig 5.7.2 Sort Order combo boxes

Then add the code shown in Fig 5.7.3 to your Report_Open event.
The field IbiSortOrder is a new textbox in the report header which tells the user what order the report is

in; add this label to your report.

The names cboSortOrder and cboAscDesc are the names given here to the two combo boxes in Fig 5.7.2.
See section 3.4.2 re the combo box Column property.

'set up sort order

OrderBy = Forms![Members before date]!cboSortOrder & " " & Forms![Members before date]!cboAscDesc

OrderByOn = True

IbISortOrder.Caption = "Ordered by: " & Forms![Members before date]!cboSortOrder.Column(1) _
&", " & Forms![Members before date]lcboAscDesc.Column(1)

Fig 5.7.3 Code to set the sort order

You should now be able to order your report in several different ways.

The Multi-Purpose Query example database on http://www.cse.dmu.ac.uk/~mcspence/Access.htm

has a further example of this.

VBA Starting v5-1.doc

Page 85

Version 5.

1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 5 — Using event code on reports

5.8 Suppressing Detail Lines

Suppose the Chelmer Leisure management decide to run the report using the current date, to list all
members, but they do not wish to see details of members who joined in the past year (i.e. those
whose years since joining = zero).

Run your report using the current date (if you are running the report in the ocxCalendar_AfterUpdate event
you may need to set the calendar Vvalue property to Null to enable the user to select today), and change
your data if necessary to get at least one member who has joined in the past year.

You can eliminate these records by adding a new criterion to the query, or you can do this in the
report. To code this in the report you use the Detail_Format event, as this formats lines before they are
printed. If you use the Detail_Print event you will get a blank line instead of no line at all. Create this
event and code as shown in Fig 5.8.1.

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)

If Years =0 Then
Cancel = True ‘don’t print the line
End If

End Sub

Fig 5.8.1 Suppressing lines in a report

Now run your report again, using the current date, and the details of members who joined in the past
year should not be shown.

You can also use run-time parameters to decide whether or not to suppress lines, by asking the user
a Yes/No question, and taking action appropriate to the answer.

5.9 Exercises.

5.9.1 Member Report

Create a report to list details of all members:
¢ Show the age at which the member joined (see exercise 3.7.3) and the current age.

e Highlight those members who have not renewed their membership since a given date. Use a
calendar control or textbox parameter for the date, and show the date in the report header.

o Allow the user to sort on a variety of fields and show the order in the report header.
e Give the user the option to suppress details of members who have joined in the past year.

e Provide report totals showing the numbers of members in each category, in total and who have
not renewed their membership since the given date.

5.9.2 Stock report

o Create a report to list all stock items that need reordering. (Re-order Level >= Stock), highlighting
all stock where the Re-order Level is less than half the Stock level.

o If there are no items to be reordered, then show this information appropriately on the report.

o Allow the user to request the report to be ordered by stock number or stock level, in ascending or
descending order. Show this information in the report header.

VBA Starting v5-1.doc Page 86 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

PART 6 — EMBEDDED SQL

REVIEW OF PART 6:

In this part of the Trainer you will see how to use the DoCmd.RunsQL method to...
...add rows to a table

...delete rows from a table

...update rows in a table

...drop (delete) a table

...Ccreate a table

...include values from parameters and variables of different datatypes in SQL
...concatenate different parts of SQL with &

...embed single quotation marks within a string value

See Appendix F for some Basics of Programming (Datatypes, Literals, Loops)
See Appendix G for an overview of SQL.
See Appendix J for a list of some useful DoCmd methods.

6.1 Introduction

You should already be aware that the Query Design Window is really an SQL-generator, creating the
SQL for a query. You can create queries from scratch using SQL or use the Query Design Window
visual format to select what you want and let Access create the SQL for you. The SQL can be viewed
and created via the View menu, or via the usual icon on the query design toolbar.

You have also seen the use of SQL in several sections of this document, including:

e Section 1.8.2 — UNION query for a possible documentation database.

e Section 3.2.4 — comparing the DLookup function with SQL.

e Section 3.4.1.2 — comparing the DCount function with SQL.

e Section 3.4.2 — that a combo box is based on the results of an SQL statement. (So are other
objects such as list boxes and charts).

e Section 3.5 — that a filter condition has the same format as the WHERE clause of an SQL
statement.

SQL underpins the features of a database, and it is essential that database programmers have, at the
very least, a basic understanding of SQL.

You can run queries (that is, run the SQL code) from within VBA. You will have seen in section 1.6 the
wizard code generated by the command button Wizard to run a query; this uses the DoCmd.OpenQuery
method. If you wanted to run a query from within your code, one method could be to...

e ...create a query

e ...create a wizard command button on a form to run the query and generate the event code

e ...delete the command button (but note that the wizard event code will not be deleted)

e ...call the event code at the point where you want to run the query.

By using the DoCmd.RunsQL method you can code and run SQL directly within VBA. This is a very
simple, easy and convenient method to use. This section will illustrate several SQL actions.

You will see in the Further VBA Trainer that you also use SQL with Data Access Objects (DAO) code.

6.2 The RunSQL method of the DoCmd object

The RunsaL Method is used to carry out the RunsaL Action of the DoCmd Object. The general format is:

DoCmd.RunSQL “...SQL String...” ‘SQL specified within the statement
or
Dim StrSQL as String ‘declare a string variable
StrSQL = “...SQL String...” ‘assign the SQL statement to the variable
DoCmd.RunSQL strSQL ‘run the SQL

VBA Starting v5-1.doc Page 87 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

The second format (where the SQL is assigned to a string variable) is the more flexible and useful

format to use because...

e _..you can inspect the contents of the variable at run-time in the Debugger (see section 1.4.3) to
see what is in there. This can be especially important with complex SQL and/or where you are
including parameter values in the statement. See Fig 6.3.2.

e ...you can build up the SQL in different parts of the code, by assigning the relevant parts as
appropriate to the string variable.

This method is used for action and data definition queries only, where the action is used to make the
required change to a table. See Fig 6.2.1.

It is not used for SELECT queries as these will return a dataset. If you wanted to select a field or total
from a table or query and put the result into a variable, then you can use the Domain Aggregate
Functions, as listed in Appendix H and seen in sections 3.2.4 and 3.4.1.2 (and used again later in this
section). If you wanted to inspect several rows of data from a table then you need to use a Recordset;
this topic is discussed in the Further VBA Trainer.

Type Query SQL Description
Action Append INSERT INTO ... Add rows
Delete DELETE ... Delete rows
Make-table SELECT ... INTO ... Create one table from another, making a
copy of the data (e.g. for an archive)
Update UPDATE ... Update rows
Data Create table CREATE TABLE ... Create new (empty) table
Definition I oate index | CREATE INDEX ... Create new index on a table
Alter ALTER TABLE Change a table structure (e.g. to add new
fields)
Delete table DROP TABLE Delete a table and all its data
Delete index DROP INDEX Delete an index from a table

Fig 6.2.1 Action and Data Definition Queries

The DoCmd.RunsSQL method works only on MS Access databases. The examples shown here apply
only to our Chelmer Leisure database, but the method can also be used to affect tables in another
database; see VBA Help.

When you run queries that change a table, you will get various Access confirmation messages, as
shown in Fig 6.2.2.

=]

You are about to append 260 row(s).

I Yy Once you click ¥es, wou can't use the Undo command to reverse the changes.
Are you sure you want bo append the selected rows?

es Mo |

You are about to run an append query that will modify data in your table.

!) Are yvou sure you wank ko run this tvpe of action query?

x|

For infarmation an kurning of F confirmation messages for document deletions, click Help,

¥You are about to delete 260 row(s) from the specified table.

! } once you click Yes, vou can't use the Undo command to reverse the changes.
Are you sure vou want to delete the selected records?

es Mo

Fig 6.2.2 Examples of Access confirmation messages

VBA Starting v5-1.doc Page 88 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

You can suppress these via Tools—>Options, - | advarced | itermatond | speling | Tabesfuen
. . . . ages W aMCE nEetnational peling aples/ueres
as ShOW.n n Flg 623 UntICk the reqUIred Wiew I General EditFind I Kevboard I Diatashest I Farms/Reparts
box(es) in the Confirm section. —— —————————0p_______ _
Default find/replace Behavior Confirm
) . % Fast search [Record changes
BUt be Ca_rerI - thlS optlo_n appears _to apply to " General ssarch [Document deletions
the machine, not the application! This means W S o s W e s
that any optlon set here will apply tO all Filker by Farm defaults For Change Options Database
appllcatlons run on the Same machlr_le, but do Show lisk of valuesin———— Do_n't display lists where mare than
not apply to the application itself. This seems [Local indexed Fields this number of records read:
very strange to me... [V Local nonindexed Fields 1080
[~ CDEC fields

Another (possibly better) method is to code

DoCmd.SetWarnings False
just before a DoCmd.RunSQL statement and
then code

DoCmd.SetWarnings True
immediately afterwards. ok | canesl | s

This method will not suppress errors caused
by incorrect SQL. It also applies just to the
application, so is more convenient for the user,
though it requires more coding by the
programmer.

Fig 6.2.3 One way of suppressing the Access
confirmation messages

6.3 Adding arow to atable

It could be useful to have a combo box for the Title field on the Membership form, so as to ensure
consistency of the data (and spelling) entered here. But if the user is restricted to the combo box
entries they would not be able to enter any new titles. By using embedded SQL it is possible to add to
the list at run-time.

Do the following (see Fig 6.3.1):

¢ Create a new table, give it a suitable name such as Title, and enter some titles.

e Change the datatype of the Title field in the Membership table to use a look-up wizard based on
the new table.
o0 Set the LimitToList property to Yes, to prevent the user entering anything other than one of the

entries in the list.

o Delete the existing Title field on the form and add the new definition from the field list. Adjust the
tab order.

e Try entering a title that is not in the list. You should see the message shown in Fig 6.3.1; this is
the effect of setting the LimitToList property to Yes.

R Title o || General Lookup |
A Display Contral Comba Box))
— Title Raow Source Type Table/Cuery Title: I j" Firsthame [
[3 m Row Source SELECT [Title].[Title] FROM [Title] Or
. Bound Calumn 1 .
Il bt
EE Calurnn Caunk 1 155
Mt Column Heads Mo Street e
— Colurin Widths 2.54cm bdrs —
hrs List Riowes g Town |Mz
M 5 List ‘Wwidth Z.5%cm
n Limit To List Ves County ICheshire
Record: I1| 1 ||

WMicrosoft Access x|

i The text you entered isn't an item in the list.

\J) Seleck an ikern From the lisk, or enter kext that matches one of the listed items,

Fig 6.3.1 Setting up a combo box for the Title field on the Membership form
and the message that is displayed if you enter a title that is not in the list

VBA Starting v5-1.doc Page 89 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

If you look at the property box for the Title combo box in the Membership table you will see that there
is an event for ‘On Not in List’. This event is invoked when the user enters a title not in the combo box
list, and we can use this event to update the table with the new title.

Create the event for the title combo box on the Membership form and enter the code shown in Fig
6.3.2.

ITi'tIe j IHotInLis’t j
[_JWPrivate Sub Title NotinList{NewData As String, Response As Integer) :I

‘see if new title needs to be added to the list
Dim =trSCL As String

If myYesMoCuestion™ & MNewData & "' is not in the list." =]
& whCrlf
& "Do you want to add this title to the list?") _ “ \ Professar’ is not in the list,
= vhbMNo Then N—fr) Do vou wank ko add this title to the lisk?
Response = acDataErContinue 'do nothing
Else ‘add the new title to the Title table e

str5QL = "INSERT INTO Title WALUES (" & MewData & ™"
DaCmd. RunS0L str30L
Response = acDataErAdded

End If iy
o End Sub - |
St O
Expression Walue Ty e Context

&g straGl "INSERT INTO Title W ALLUES ('Professor)” String Farm_iembership Title _MatinList

Kl B

Fig 6.3.2 Code to ask a question of the user and add a row to the Title table if user replies Yes.
This shows the code in the Debug window, with a Watch window for the contents of strSQL.

The code in Fig 6.3.2 is explained below:

Private Sub Title_NotInList(NewData As String, Response As Integer)

e Procedure header for a NotlnList event for the Title field on the form.
o0 The NewData argument contains the value that the user has just entered in the field.
o The Response argument is for the code to use to tell Access what to do next.

‘see if new title needs to be added to the list
e Justa comment.

Dim strSQL As String
e Declares a String variable to store the SQL statement.

If myYesNoQuestion(*"” & NewData & “’ is not in the list.” _
& vbCrLf _
& “Do you want to add this title to the list?") _
=vbNo Then
o Uses the myYesNoQuestion function (see section 1.7.2) to ask the user whether this is a new title
or not (it could, of course, be a typing error).
¢ Note that this question uses the value in NewData as part of the question. It is shown with single
guotation marks around it for emphasis.
o “'" — isthe string for the single quotation mark at the start of the user text.
o0 & NewData — adds the text that the user has typed in.
o &"'isnotin the list.” — adds the single quotation mark at the end of the user text, plus the
rest of the sentence.
e The text of the question is split over two lines, using the built-in constant vbCrLf (new line).
e The statement is split over four lines of code, using space+underline at the end of the first three
lines.
e Each element of the statement is joined with the concatenation character &.

VBA Starting v5-1.doc Page 90 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

Response = acDataErrContinue ‘do nothing
e Tells Access to carry on and refuse to accept the new value. The user will have to enter a value
again. The Access error message in Fig 6.3.1 will not be displayed.

Else ‘add the new title to the Title table
e The user wishes to add this new title.

strSQL = “INSERT INTO Title VALUES (*" & NewData & “")”
e Puts an SQL statement into the string variable. Uses the value in NewData.

0 The quotation marks are organised: “INSERT ... VALUES (* “ & NewData & “) “

See the contents of the Watch window in Fig 6.3.2: “INSERT INTO Title VALUES (‘Professor’)”

As for the message displayed for the user, the content of NewData has single quotation marks

around it, this time because it is a String value.

o A numeric value would not need any quotation marks. A date/time value would need # marks
around it. There are examples with different datatypes in the following sections.

DoCmd.RunSQL strSQL
e Runs the SQL statement and adds the value to the table.
e If you wanted to code this line without using a string variable, then you would code:
DoCmd.RunSQL “INSERT INTO Title VALUES (" & NewData & *)”

Response = acDataErrAdded
e Tells Access that the new value has been accepted and the user will now be allowed to carry on.

End If
e End of the IF statement.

End Sub
e End of the sub procedure

There is a third value that could have been used for Response, acDataErrDisplay. This tells Access
to display the standard error message as shown in Fig 6.3.1.

6.4 Updating arow in a table

Suppose the Chelmer Leisure management want to introduce a new membership category of 7 with a
very low annual membership fee of £5.00, just for students.

It is easy to add a new category via the Membership Category form, but not so easy to determine
which existing members are students. The staff could go through a membership list, selecting just
records where occupation = ‘Student’, and change each category manually, but this could be time-
consuming and error-prone. However, it is simple to effect such a change via embedded SQL.

Do the following:

e Remove the validation check in the Membership table that restricts the Category No to the range
1to 6.

e Change the Category No field on the Membership form to be a combo box based on the

Membership Category table. Set the LimitToList property to True.

o This is a much better way of validating the Category Number entered into the Membership
record, as it uses the range actually in the Membership Category table, and will not require
any further changes to the system should the management wish to introduce more categories
in the future.

o Create a new ‘Change Membership Categories’ form, not based on any table, with three unbound
textboxes and an unbound command button, and the code as shown in Fig 6.4.1.

e Add a button to the Membership Category table to open this form. See Fig 6.4.1.

VBA Starting v5-1.doc Page 91 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

Option Compare Database
Option Explicit

Dim strWhere As String 'global variable - used in two places

Private Sub Form_Load()
‘copy Category No into this form
'move cursor to Occupation field

txtCategoryNo = Forms![Membership Category]![Category No]
txtOccupation.SetFocus

End Sub

Private Sub txtOccupation_AfterUpdate()
'display count of members with this occupation

strWhere = "Occupation = " & Forms![Change Membership Categories]!txtOccupation & "
txtNum = DCount("[Membership No]", "Membership", strWhere)

End Sub
=
Category Mo Category Type Membership Fee £ .
o oo e r txtCategory txtOccupation
| 1 |Seni0r | £26.00
| 2 |Seni0r Club | £30.00
I = |Juni0r I S0 & Change Membership Categories = Foi ;IEIEI
| 4 |Juni0r Club | £15.00
Zakeqgory Mo:
| 5 |Cuncessiunary | £18.00 Members with this
[E[Vauth b | T20.00 occupation =
4] 7 [Student [0 Occupation [
*| | | £0.00
Make the changes
- 4

Check Fee Changes | Update Fees |

Change Membership fr

Category for selected

members Cdehangecat txtNum
Record: LI;II 7 Llllﬁl of 7

Fig 6.4.1 Change Membership Categories form and opening code

You should be able to understand the code shown in Fig 6.4.1:

¢ When the new form is opened, the Category No for the current record in the Membership
Category form (note the position of the record selector) is copied to the new form and the cursor is
positioned in txtOccupation ready for the user to enter the required occupation.

o When the occupation has been entered the code uses the Domain Aggregate DCount function (see
section 3.4.1.2) to count up the number of matching records in the Membership table, and puts
the result in txtNum.

o Atrun-time, the value in strwhere would be: “Occupation = ‘student
o Note the single quotation marks around the string value ‘student’.

Now add the code shown in Fig 6.4.2. This is the code to use embedded SQL to update the
Membership table. Check your table and see that the records have now been updated.
e At run-time, the value in strsQL would be:
“UPDATE Membership SET [Category No] = 7 WHERE Occupation = ‘student™
e The Category No is numeric so does not need quotation marks (or anything else) around it.
¢ Note that this code reuses the WHERE condition set up in strwhere, as the same SQL format is
required for the Domain Aggregate Functions. This also ensures that the count and the action are
both working with the same table rows.

VBA Starting v5-1.doc Page 92 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

Private Sub cmdChangeCat_Click()
'use embedded SQL to update the Membership table

Dim strSQL As String

strSQL = "UPDATE Membership SET [Category No] =" & txtCategoryNo & " WHERE " & strWhere
DoCmd.RunSQL strSQL

End Sub

Fig 6.4.2 code to update the membership table.

This is just a very simple example of using UPDATE. It is a moot point whether in this case one
should check just for a match with ‘student’ or look for ‘student’ anywhere in the Occupation field by
coding

strWhere = “Occupation LIKE *” & Forms![Change Membership Categories]!txtOccupation & “*””

as the occupation could have been entered as ‘University Student’. At run-time, the value in strsQL
would then be:

“UPDATE Membership SET [Category No] = 7 WHERE Occupation LIKE “student*”

But this method would also pick up occupations such as ‘Student Careers Advisor’. You will need to
think carefully about the implications of any method that you use for a real system; this is just a simple
example to demonstrate the use of embedded SQL for UPDATE which also uses parameter values
from a form.

6.5 Creating and Dropping tables

It is often useful to solve a problem by creating a temporary table, adding the required data,
processing it and then deleting (dropping) the table afterwards. The Further VBA Trainer has a large
example to create a Booking form that looks like a diary page, and that uses a temporary table to
reorganise the bookings data into the required format.

The example to be shown now does not relate to the Chelmer Leisure Centre, but is just a simple
example to create 6 lottery numbers, creating a temporary table to store the numbers before
displaying them in a list box.

The form is shown in Fig 6.5.1. The list box is an unbound list box (created without the wizard) called
IstNumbers with the RowSourceType property set to Table/Query in the property box. The Close Form button
is a wizard button to close the form.

x
These are your 6 lucky numbers

22

10

20

25 Close Form

12

36

Fig 6.5.1 the Lucky Numbers form.

The code is shown in Fig 6.5.2. This code, although for a simple application, introduces several new
concepts. It also uses the Rnd built-in function to calculate random numbers in the required range; look
this up in VBA Help and Appendix H.3, it is very easy to use.

VBA Starting v5-1.doc Page 93 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

Option Compare Database
Option Explicit

Private Sub Form_Load()
"most of the work is done in this event

'define constants for range to be used.

'This is better practice than using the literal values in code later
‘It is easy to see what the range is, and to change it if wanted.

Const intLower = 1 'lowest number in range
Const intHigher = 49 'highest number in range
Const intNosRequired = 6 'number of numbers required to be calculated

'define variables for the random number calculation

Dim intScaleFactor As Integer 'use this with Rnd function to calculate lucky number
Dim intLuckyNo As Integer 'used to store each random number from Rnd function

'initialise variables
'

intScaleFactor = intHigher - intLower + 1 ‘calculate scale factor to use throughout
'simplifies the calc for Rnd later. — check this in VBA help
Randomize "initialise the sequence - will be based on system timer

‘get and display the required nhumbers

DoCmd.RunSQL "CREATE TABLE tbINumbers (Num NUMBER)" ‘create temporary table
Do Until DCount("Num", "tbINumbers") = intNosRequired

intLuckyNo = Int((intScaleFactor * Rnd) + intLower) 'calc next lucky number
If DCount("Num", "tbINumbers", "Num =" & intLuckyNo) =0 Then ' we have a new number
DoCmd.RunSQL "INSERT INTO tbINumbers VALUES (" & intLuckyNo & ")" 'add to temp table
Else
'do nothing - already have this number
End If

Loop

'bind listbox to tbINumbers - this will show the numbers
IstNumbers.RowSource = "SELECT * FROM tbINumbers"

End Sub

Private Sub cmdClose_Click()

On Error GoTo Err_cmdClose_Click
IstNumbers.RowSource =" 'remove binding to tbINumbers before deleting table
DoCmd.RunSQL "DROP TABLE tbINumbers" ‘'delete temporary table
DoCmd.Close

Exit_cmdClose_Click:
Exit Sub

Err_cmdClose_Click:
MsgBox Err.Description
Resume Exit_cmdClose_Click

End Sub

Fig 6.5.2 Code to create and drop a temporary table, and calculate and display lottery numbers

Explanation of the Form_Load code in Fig 6.5.2:
e Most of the action occurs in this procedure.
e The random number sequence is first initialised.

e A temporary table called tbINumbers is created, with just one field called Num of datatype
NUMBER, as it will be a numeric field.
o Datatypes that can be used on SQL include: NUMBER for numeric data; CHAR(n) for string
data where n = the length of the string field; DATE for date/time values.

VBA Starting v5-1.doc Page 94 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

e The code then has an example of a DO UNTIL ... LOOP to keep repeating the calculation until

the required number of numbers has been calculated.

o The loop condition compares the count of rows in tbINumbers (worked out using the DCount
function) with the required number. Initially, of course, DCount will return zero.

o The Rnd function is used to calculate the next number.

0 The DCount function is used to count up the number of rows that already have this number.
= If the count is zero then we have a new number and it is added to the table, using the

embedded SQL INSERT statement.

= As the number is numeric, it does not need to be enclosed in anything.

o0 Check VBA Help and Appendix F.3.3 for more information on loops.

o When the loop has finished, the RowSource property of the unbound list box IstNumbers is set to SQL
that selects all the numbers from the table, so that the numbers will be displayed in the list box on
the form.

e The form will now stay up, with the numbers showing, until the user closes the form by using the
command button (the form close button in the top right-hand corner has been disabled).

Explanation of the cmdClose_Click code in Fig 6.5.2:

e The binding to tbINumbers in the RowSource property of IstNumbers is removed so that the table can
now be deleted.

o This will also clear the contents of the list box, which is why this action is not put in the
Form_Load event.

o If you attempt to delete the table without clearing the RowSource property first you get the error:
“The database engine could not lock table tbINumbers because it is already in use by another
person or process”. This means that you cannot delete a table that is bound to an object on
an open form.

e The temporary table tbINumbers is then dropped (deleted) using an embedded SQL DROP
statement.

o Note that an SQL DELETE statement refers to the deleting of rows in a table, so the same
word cannot be used for the deleting of the table itself. DROP is used to delete tables, or
indexes of tables.

e The form is then closed.

This example has just a simple table with one column. If you wanted to create a table with more

columns, with different datatypes, you would code:
DoCmd.RunSQL “CREATE TABLE tblIExample (ColNum NUMBER, ColText Char(20), ColDate DATE, ColTime DATE)”
DoCmd.RunSQL “INSERT INTO tbIExample VALUES(3, ‘ABC’, #20/3/2004#, #15:00#)”

JST=IE i
ColNurm ColText ColDate | ColTime T — E—

O 3 ABC 20/03/2004 15:00.00 s Daceine

* olTime Date/Time _I

Record: I<| 4 || 1k |>| |>*| of 1 Field Properties

. . . General | Looky I
Fig 6.5.3 Example of using CREATE and INSERT with aems‘zel : 20
several fields of different datatypes o

Caption

Default Yalue

Walidation Rule

Walidation Text

Required Mo

Allow Zera Length Ves
Indexed Mo
Unicode Compression Mo

IME Mode: Mo Conkrol
IME Sentence Mode Mone

Section 6.6 has an example of using INSERT for a table that has an AutoNumber primary key.

VBA Starting v5-1.doc Page 95 Version 5.1 — July 2005

VBA Trainer - Getting Started

6.6 Deleting arow from atable

Part 6 — Embedded SQL

Suppose that the Chelmer Leisure management want a facility to allow them to take a room out of use

for a day, for maintenance reasons. A possible way to do this could be:

e List all bookings for that room on that day

e Make suitable arrangements to book another room for the same date and time, or contact the
class/member if this is not possible.

e Delete the bookings

e Create new bookings for the maintenance (in order to stop the slots being booked by anyone

else).

You should know how to create a query to list the affected bookings, so the example here will
concentrate on just the last two bullet points above.

The form and code in Fig 6.6.1 is for a possible
form that can be used for the required purpose.

Microsofticeaes ll Date of closure: | 20 September 2004

P>
</

B Maintenance Scheduling : Form

Maintenance scheduling

=Y

Monday

OK to delete the hookings? RoomfHallfCaurt: ICourt 1 'I

Deleted bookings cannok be re-instated

Check Bookings |

Yes Mo |

Bookings affected = E

Option Compare Database
Option Explicit

Dim strCriteria As String
‘'used from different subs in SQL for DELETE and for DCount

Private Sub cmdSchedule_Click()

Dim strSQL As String ‘for SQL for RunSql action

Dim intCount As Integer 'loop counter

Dim dtBkgTime As Date 'time variable for loop

Const conMembNo = 1 'used to signify maintenance

Const conBkgStartTime = #9:00:00 AM# 'time for first booking in a day

'show count of matched records on the form
myShowCount

'Ask if it's OK to carry on and delete the bookings
If MsgBox("OK to delete the bookings?" _
& vbCrLf & "Deleted bookings cannot be re-instated”, _
vbYesNo + vbQuestion) = vbNo Then
‘do nothing
Else
strSQL ="DELETE * FROM Bookings WHERE " & strCriteria
DoCmd.RunSQL strSQL 'this will delete the records
‘later — code from Fig 6.6.2 will go in here ****xkkikiiiiiiik
End If

End Sub

Private Sub myShowCount()

'set up criteria for locating the bookings
strCriteria = "Date = (#" & txtDate & "#)" _
& " AND [Room/Hall/Court] =" & txtRoomHallCourt & """

'Show the number of records found in a textbox on the form
txtNumBookings = DCount("[Booking No]", "Bookings", strCriteria)

End Sub

Fig 6.6.1 Form and code for deleting bookings from Bookings table

VBA Starting v5-1.doc Page 96

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

Explanation of code in Fig 6.6.1:

e The user should enter the date and the room for the maintenance, then choose either the Check
Bookings button to see the bookings affected (code is not shown here), or the Schedule button to
delete the bookings.

o The code should also, of course, perform suitable validations on the parameter values, but
these have been omitted here as they are not the purpose of this example.

e The sub procedure myShowCount puts the WHERE criteria for the DCount function in the variable
strCriteria; this is a global variable as it will be used later for the SQL as well. Note the use of # for a
date.

0 Atrun-time, strCriteria would contain:
“Date = (#20/09/2004#) AND [Room/Hall/Court] = ‘Court 1"
You can see this by using the Debugger (section 1.4.3).
o The value returned by the DCount function is put in a textbox on the form.
o This code is in a separate procedure so that it can be used from the command button to list
the bookings and the command button to schedule the maintenance.

e The code behind the Schedule button does the following:

o The purpose of the variable strsQL should be obvious. The remaining four variables are used
by Fig 6.6.2 below.

0 The procedure myShowCount is called to show the count of matching records on the form.

o0 The user is asked whether or not they wish to delete the records, with a reminder that
deletions cannot be undone.

o Ifthe user replies Yes, then an embedded SQL DELETE statement is used to delete the
records. Note the re-use of the WHERE condition in strCriteria.

Finally, what needs to be done is some method of stopping anyone making bookings for the room and
day, as they are now free as far as the database is concerned. The code in Fig 6.6.2 shows a method
of doing this, which assumes for the purposes of this example that Member No 1 has been reserved
for maintenance; that is, it is a ‘dummy’ member record. This method also serves to demonstrate
some useful coding.

The database currently only has two types of bookings (Member and Class) but could be extended to
include such things as maintenance, public holidays, etc.

'Finally, create bookings for all times for that day and room for maintenance
'this code assumes that Membership No 1 is used for maintenance purposes.

dtBkgTime = conBkgStartTime ‘'for the first booking time in a day
For intCount = 9 To 20 'booking times 09:00 to 20:00
strSQL ="INSERT INTO Bookings ([Room/Hall/Court], " _
& "[Member/Class], " _
& "[Membership No], [Date], [Time]) " _
& "VALUES (" & txtRoomHallCourt & "'," _
& "Yes," _
& conMembNo & ", _
& "(#" & txtDate & "#)," _
& "(#" & dtBkgTime & "#))"
DoCmd.RunSQL strSQL 'add the booking record for scheduled maintenance
dtBkgStartTime = DateAdd("h", 1, dtBkgStartTime) ‘add 1 hour to time
Next intCount

MsgBox ("Maintenance scheduled OK") ‘confirmation message

Fig 6.6.2 Code to book all time-slots for the room and date

Explanation of code in Fig 6.6.2:

e The code needs to make bookings for all times from 09:00 to 20:00 (assumed here to be the
times for which rooms can be booked). This implies that a loop should be used. The loop type that
seems appropriate is a FOR ... NEXT loop, counting from 9 to 20. Use VBA Help and Appendix
F.3.3 to find out more about FOR loops.

e Prior to the loop starting, the variable dtBkgTime is set to a constant value representing 9 AM.

o The code inside the loop is as follows:
o0 strsaL is set to an INSERT statement with values for appropriate fields in the new Bookings
table row. At run-time this will look like:
"INSERT INTO Bookings ([Room/Hall/Court], [Member/Class], [Membership No], [Date],
[Time]) VALUES (‘Court 1’,Yes,1,#20/09/2004#,#10:00:00#)”
= Earlier examples of the SQL INSERT statement were for simple tables with just one field,
so the statement did not specify the field names.

VBA Starting v5-1.doc Page 97 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 6 — Embedded SQL

= This example is more complex as
(a) only a selection of fields has data entered, and
(b) the Bookings table has an AutoNumber primary key.
= Only the fields that are needed to make the booking are used on this SQL:
= the room (string datatype)
the fact that it is a member booking (Yes/No datatype)
the member number (numeric datatype)
the date (date/time datatype)
the time (date/time datatype)
= The SQL therefore lists the fields that are going to have values entered into them, and
then lists the values in the same order.
= The primary key field of Booking No (an AutoNumber datatype) is not in the list; Access
will calculate the key value automatically.
o The SQL is then run.
0 The built-in DateAdd function is used to add one hour to the time in dtBkgTime for the next cycle
round the loop.
o The loop will stop when intCount passes the value 20.

¢ Aninformation message is displayed after all the maintenance bookings have been made.

Possible problems. Using embedded SQL is a powerful but simple method of making changes to
tables. The things that trip students up are usually:

e Omitting to put quotation marks around string values.
¢ Omitting to put # around date/time values.

o Misspelling table or field names. This may give you the run-time error 2001, ‘you cancelled the
previous operation’. Not exactly intuitive!

e Missing out spaces needed between elements (e.g. before/after words such as WHERE, AND,
OR).

¢ Missing an & needed to join two elements.

e Missing space+underline at the end of a line when continuing code to the next line.

e Putting calculated dates in SQL in UK format. Access Help states: “You must use English (United
States) date formats in SQL statements in Visual Basic. However, you can use international date
formats in the query design grid”

See VBA FAQ 15 on http://www.cse.dmu.ac.uk/~mcspence/Access.htm for more information and
for a method of catering for this. Also see Fig 8.3.7.

6.7 Exercises

6.7.1 Add values to Town and County combo boxes at run-time.

Turn the Town and County fields on the Membership form into combo boxes, and allow the user to
add new values as required at run-time by using embedded SQL INSERT statements.

6.7.2 Record class sales

Tutors are allowed to take a selection of stock to a class, and record afterwards how many of an item
they have sold.

e Add a button to your stock form to allow the tutor to record the number of items sold.

o Validate as appropriate, including that this is not greater than the current stock level.

e Use an embedded SQL UPDATE statement to update the stock amount in the Stock Level table.

o0 As the Stock Level table has a name made up of two words, you must remember to use
square brackets around it:
UPDATE [Stock Level] SET ...

VBA Starting v5-1.doc Page 98 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 7 — Miscellaneous

PART 7 — MISCELLANEOUS

REVIEW OF PART 7:

In this part of the Trainer you will see...

...how to create and use a tabbed form.

...how to use the DoCmd.TransferSpreadsheet method to import /export data.
...further use of embedded SQL.

...information regarding backups, compacting etc.

...how to link to an external database.

...how to prepare your database for distribution.

...using the WITH statement.

See Appendix J for a list of some useful DoCmd methods.

7.1 Introduction

This Part of the document discusses various items that do not naturally belong in another Part.

Many of the items discussed here do not use VBA, but are mentioned for completeness.

7.2 Using tab controls on forms

“With the tab control, you can construct a single form or dialog box that contains several different tabs,
and you can group similar options or data on each tab’s page. For example, you might use a tab

control on an Employees form to separate general and personal information.”
MS Access 2002 — VBA Help

Toolbox - x
The tab control is very simple to use via [persond B
the form design toolbox. See Fig 7.2.1. = Fomat | s | et [[oter | A1 |
A ab| [T 2 @ [| i e
If you look at a tab property box, you will v B A | e e
see that each is called a ‘page’ and has a . o B -
set of events for which you can add code. € = rasled ol
Just as for any other control, you can O R i o siom
change the default name to one of your || S e —
own and add a suitable caption. See Fig 7.2.1. N e
s
By clicking on the outer edge of the control, you will see the (.
property box for the full control. Note that you can set the - onwamete

MultiRow property to True if you have a lot of tabs.
Fig 7.2.1 Toolbox icon, and property box for a tab on a tab control

You will have seen tab controls already — for example, a property box, such as that in Fig 7.2.1, has a
tabbed control on the form.

The Membership form has rather a lot of information on it, plus a whole load of buttons and other
controls; see Fig 3.5.2 and the exercises in section 3.6. By using tab controls, you can show just the
information that you wish at any time and make the form less cluttered. It can also be useful for
restricting information that can be seen in a system where different users have different security levels
(set the tab visible property to True to hide the page). The Further VBA Trainer discusses methods of
setting security levels for different users.

VBA Starting v5-1.doc Page 99 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

Do the following: (see Figs 7.2.3 and 7.2.4 for the finished form)

Create a copy of your Membership form and call it something like ‘Membership with tabs’.

Check your code and change all references to the form name from Membership to [Membership

with tabs].

o For example, any forms collection reference such as those used in the various DCount and
DLookup functions used for filter counts will need to be changed. If you omit these changes
here you will get the error message shown in Fig 7.2.2 (which is not exactly a helpful
message!). Edit 2 Replace is useful, but you must be careful to distinguish between the form
name (which has changed) and the table name (which has not).

Microsoft Yisual Basic

Run-time error ‘2001

*fou canceled the previous operation.

Continue | End | Debug I Help |

Fig 7.2.2 error if you refer to the wrong form name

Extend the form downwards and add a tab control (this toolbox control does not have a wizard).

o You will get two pages by default, but if you want to add another then right-click on one of the
tabs and choose Insert Page. A new page will be added to the right of all the pages.

o To change the page order, right-click on a tab and choose Page Order, then set the order that
you want.

o To delete a page, right-click on the specific page and choose Delete Page.

Call your tabs pgPersonal and pgOther with captions Personal and Other.

Use cut and paste to copy controls from the detail section of your form onto each tab page
(dragging the controls doesn’t seem to work). Then move things around and adjust the sizes of
the tab controls and the form as necessary. The various buttons and controls still work as before
— try them out and see.

You don’t have to use the pages for data. Look at the page for Filters in Fig 7.2.4.
o0 You may need to re-link the various events to the controls (use the property boxes), but after
that they should still work as before — try them out and see.

You can also use subform data on the form. Look at the page for Classes Joined in Fig 7.2.4.

By default, the page with Pageindex = 0 will be displayed, but you can change this by using the

SetFocus method, either for the page itself or for a field on the page. For example, pgOther.SetFocus

or [Category No].SetFocus Will both cause the Other tab to be shown.

o Moving between records will keep the same page on display unless you have a SetFocus
statement in the Form_Current event that changes the focus to another page.

ini
Chelmer Leisure and Recreation Centre FindName [Forsythe - ':rlﬂ,’.ﬁ
Membership Details Clear al
P fiters 21 members
Membership No L i =1 Fistname [Ann M
View
Lastname |Forsythe
Personal |Ellhe| | Fiters | Classes Jained |
Street 2 Ferndale Close |

Town Chelmer
County ICheshire Date of Renewal 16/09.199E
Fost Code I

Telephone Mo |07777 569345

Fig 7.2.3 Membership form with tab control

VBA Starting v5-1.doc Page 100 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 7 — Miscellaneous

o]
Chelmer Leisure and Recreation Centre FindName [Forspthe = ose
Membership Details Clear all
fiters 21 members
Membeishipa [4] Tile: [Miss =] Firstoame [onn b :
Lasiname [Fosste | LI
Personal Dther | Fiters | Classes Joined |
5 Membership P] o3
Categey o [2] Dae of Bith Chelmer Leisure and Recreation Centre Frdtare [Fossie =] Eloss
i Membership Details Clear all
Ocoupation [Feceptonst et P = 21 members
Sporting Interests Sex - | Membership No 4 Tite: [Miss =] Firstname [Ann M
ol Lastname [Forsythe LI
& F| Personal| Other Fiters | Classes doined | & Membership =1oix|
Enter first charanter(s) of Chelmer Leisure and Recreation Cenire FindName [Forspthe - Close
Jast name Select Town Hose
- Membership Details Clear al
=~ P fiters 21 members
Filter By Name: Filter bu Town
Membership No 4 Title: [Miss =] Firstname |AnnM
Select Cateqory Type Enter joining date Lastname [Forsythe M
[I [Peisonal | Other | Fiters Classes.Joined |
Filter Bu Catenor | Fiter after join date | Classas Joined 4
5 - ClassMa ClassDapandTime Chass Tulor ClassActiviy M/F/Miced B
Tkl - nter sparting interest
smaker > 7 [Monday | 1500 [Wheidon Step Aorcics | [Mined
Fiter Smokers | Fiter Sorting Interest | | 6 [Fricay 000 [Catham [Besdy Condtorin [Female:

Fig 7.2.4 The contents of the other tabs on the
Membership form

R

Record; 1] < Lo | of 2

7.3

Importing/Exporting spreadsheet data

Suppose that class attendance registers are recorded in spreadsheets on a laptop by each Class
Tutor, and that the data is then to be added to the database to keep a record of class attendance for
each member. The example described here will show how to use DoDmd.TransferSpreadsheet to import
the data into a table in the database.

7.3.1 The TransferSpreadsheet method

This method is used to transfer data in from a spreadsheet, or to create a spreadsheet from data in a
table. It uses several parameters (see Fig 7.3.1 and VBA Help), and is coded as shown below (extract

is from VBA Help):
DoCmd.TransferSpreadsheet(TransferType, SpreadsheetType, TableName, FileName, HasFieldNames, Range, UseOA)

This is the default if this
parameter is omitted.

Parameter Import from spreadsheet Export to Comment
spreadsheet
TransferType aclmport acExport Specifies the type of transfer. A third

option is acLink, for linking to a data
source.

Spreadsheet Type

The default assumes an Excel spreadsheet.

There are many values allowed here;
see VBA Help.

TableName The name of the table into The name of the Imported data is always appended to
which you want to import the table or query from the named table if the table exists;
data. which you want to otherwise a new table is created.

export data. You Exported data will create a new file or

cannot specify an a new sheet in an existing file,

SQL statement. according to the version of the
software.

FileName The full path of the file used, as a String expression.

HasFieldNames

True if the data area has a
heading row.
False (default) otherwise.

Irrelevant and
ignored. Exported
data will always
have a heading row.

Named columns in an imported
spreadsheet do not have to be in the

same order as in the destination table.

Access will match the names.

Range A defined range of cells or a Irrelevant, but must
named range. Can be prefixed be omitted or the
by the sheet name. If omitted export will fail.
then the whole sheet is
imported.
UseOA This is not explained anywhere in Help, but does not seem to be needed (?)

VBA Starting v5-1.doc

Fig 7.3.1 Parameters used for TransferSpreadsheet method

Page 101 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous
7.3.2 Importing, using a named range and named columns

Stage 1 — Create an Excel spreadsheet as shown in Fig 7.3.2.

e Thefile is called Class Attendance.xls

e The sheet for the data is called Details. Other sheets in the file can contain other information if
wanted.

o The shaded area has been given the name of DataArea
o Check Excel Help for details on creating, viewing and amending named rows. Use keywords

Name; Range; and look at the item for “Name cells in a workbook”.
e The first row is a heading row.

Stage 2 — Create a table as shown in Fig 7.3.2.
e This is the table into which the data is to be read.

The name of the spreadsheet file and the database table are the same in this example, but they can
be different.

F3 Microsoft Excel - Class Aktel 1Ol x|
: B = x
File Edit “iew Insert Format Tools Data & Class Atteng o —IEI—I
window Help _ 8 x | Field Mame Data Type | Description |«
= = % |AttendancelD AutoMumber
'3 5. | = » Class Date Dake) Time
Class Mo Mumber
= = = =4 »
10§ I =5 = e - - Membership Mo Murber
ZH|GRY|4 BB (oo 2 B - =
ield Properties
Datafrea = fe Class No 2
A B c | j General | Lookup |
| 1 |Class No Membership No Field Size Long Integer
2 5 ! Format
| 3 | 5 7 Decimal Places Auto
4 E 10 Input Mask
5 7 1 Caption
B Fi 2 Defaulk Yalue n
7 walidation Rule
3 walidation Text
&) Required Mo
10 - Indexed Mo
4 4 » »iDetails { Sheetz £ 2[4] | |
Draw~ [3 | AutoShapes~ ™. s [] O [T
Sum=50 MU v

Fig 7.3.2 spreadsheet data and table in database into which data will be imported.

In order to keep this example simple, the spreadsheet data shown includes the Class No, as the same
Tutor may run more than one class on the same day. However, it would be just as valid (and probably
better) to require a separate sheet for each class, and for the tutor to select the class (possibly from a

list) at run-time, with embedded SQL used to add the Class No to each new table row.

The table has the following columns:
e AttendancelD
o This is an AutoNumber primary key. It is not shown on the spreadsheet data as Access will
allocate this value at run-time.
e Class No
o The value in here will be the value from the spreadsheet cell. The spreadsheet and table
columns must have the same name (see section 7.3.4).
e Class Date
o The example to be used here will request the tutor to enter this value at run-time. The date is
then added to each new table row using embedded SQL, so that you can see how it is done.
See Fig 7.3.3.
e Membership No
o The value in here will be the value from the spreadsheet cell. The spreadsheet and table
columns must have the same name (see section 7.3.4).

VBA Starting v5-1.doc Page 102 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

Stage 3 — create a non-wizard command button on your Main Menu to allow the Tutors to record
class attendance. Call it cmdClassAttendance. Create a click event for the button as shown in Fig 7.3.3.

Private Sub cmdClassAttendance_Click()

'read in data from spreadsheet

'Access will work out the table AutoNumber key
'input data validations omitted for simplicity

Dim dtClassDate As Date

dtClassDate = InputBox("Please enter date of class") 'ask for date

mylmportData "Class Attendance" 'read data from spreadsheet into table

DoCmd.RunSQL "UPDATE [Class Attendance] SET [Class Date] = #" & dtClassDate & "# WHERE [Class Date] IS NULL"
myDisplaylnfoMessage ("Data successfully added")

End Sub

Fig 7.3.3 Code for cmdClassAttendance button Click event
Explanation of the code in Fig 7.3.3:

Dim dtClassDate As Date
e Just a declaration of a variable, to convert the input data to a date datatype.

dtClassDate = InputBox(“ Please enter date of class”) ‘ask for date

e Ask user for the date. This example uses InputBox purely for simplicity here and does not perform
any validations on the data (if any) that has been entered. A project or live system should use a
text box or calendar control and perform appropriate validations.

mylmportData (“Class Attendance”) ‘read data from spreadsheet into table
e Calls a new procedure (not written yet, so code will not compile yet) to read the spreadsheet.
o The procedure requires just one parameter, being the (same) name of the spreadsheet and
the table.
o This code has been put into a separate procedure as you may find it useful to use/adapt if you
need to read several different sheets into database tables in the same system.
= It also demonstrates the usefulness of using separate procedures.

DoCmd.RunSQL “UPDATE [Class Attendance] SET [Class Date] = #” & dtClassDate &
“# WHERE [Class Date] IS NULL”

e The procedure mylmportData does not delete any data from the Class Attendance table, so the new
rows are added to any existing data. These rows will not have anything in the Class Date field.
e This DoCmd.RunsQL statement shows how to add a value to the new rows in the table.

myDisplayIinfoMessage (“Data successfully added”)
o Just a feedback message to the user.

Stage 4 — In a separate Access module, create the procedure shown in Fig 7.3.4

Public Sub mylmportData(prmName As String)
'read in spreadsheet into table of the same name
'sheet has a named data area

‘constants

Const strPath = "A:\" 'path for the input spreadsheet

Const strSheetRange = "DataArea" 'name of range on sheet for the data — see Fig 7.3.2
'variables

Dim strFullPath 'path and name for spreadsheet

'set up full path - assumes sheet is called prmName.xls
strFullPath = strPath & prmName & ".xIs"

'read the named range into the table
DoCmd.TransferSpreadsheet aclmport, , prmName, strFullPath, True, strSheetRange

End Sub

Fig 7.3.4 Procedure to read in data from a named range on a spreadsheet

VBA Starting v5-1.doc Page 103 Version 5.1 — July 2005

VBA Trainer - Getting Started

Explanation of the code in Fig 7.3.4:

Public Sub mylmportData(prmName As String)

e Procedure header, with one parameter, the parameter value being used for both the spreadsheet
name and the table name, which are assumed to be the same in this example.

Use two parameters if the names are different and adjust the code accordingly.

o

Const strPath =*“A:\"
Const strSheetRange = “DataArea”

Part 7 — Miscellaneous

‘path for the input spreadsheet
‘name of range on sheet for the data

e As the data is physically carried on some form of device other than a hard disk, the drive for the
device needs to be specified here. The code here assumes that the data is on a floppy disk which
the machine recognises as A:

If the data was in a separate area on the network, on a drive called R:, in a folder called Class

Data, then the code would be:

0

Const strPath = “R:\Class Data\”

If the data was in the My Documents folder of the current machine, then the code would be:

Const strPath =

If the data was in a folder called Class Data within the My Documents folder of the current
machine, then the code would be:

Const strPath = “Class Data\”

e |tis probably best to require that the user must always put the data in the same area, to save
mistakes at run-time.

Dim strFullPath

‘path and name for spreadsheet

e Variable to contain the full pathname. No need to put this in a variable, but it is useful to code this
way as you can examine the contents at run-time in case of errors, using the Debugger.

strFullPath = strPath & prmName & “.xIs”

e Joins the path, the filename and the spreadsheet extension.

e At run-time, this will contain “A:\Class Attendance.xIs”

DoCmd.TransferSpreadsheet aclmport, , prmName, strFullPath, True, strSheetRange
e This line will import the data.
aclmport is used (although it is also the default) to specify that this operation is to import data.
The type of spreadsheet is not specified, so the default of an Excel spreadsheet is assumed.
Note that you must include the comma-separator when an argument has been omitted.
The value in prmName is used to name the destination table.
The value in strFullPath is used to tell Access where to find the spreadsheet.
The sheet contains a heading row, so the 5" parameter specifies True.
The value in strSheetRange is used to specify the data range on the sheet.
This value does not tell Access which sheet to look in, but this is not necessary as range

(0]

o

O O0OO0Oo

names must be unique in the file, so Access can
work out where to look.
If you wanted to specify the sheet, then it would
seem logical to code:

Const strSheetRange = “Details!DataArea”
but this generates the error shown in Fig 7.3.5.
| have no idea why this doesn’t work with a
named range, or why the exclamation mark (!)
becomes a dollar sign ($).

! Microsoft ¥isual Basic

Run-time error '3011"
The Microsoft Jet database engine could naot find the object

'DetailsfDatasrea’. Make sure the object exists and that you spell its
name and the path name correctly.

Continue | End | Debug I Help

Fig 7.3.5 error message when referencing named range plus sheet name

Stage 5 —try it all out

With your spreadsheet file in the area specified by strPath, click on the new Record Attendance button
on your main menu, enter a date, and see what happens. You should get the message that the data
has been added. Look at the table and see the data, with the date now in the rows.

Try again with a new date, and check the result. The new rows should have the new date and the
existing rows should be unchanged.

VBA Starting v5-1.doc Page 104

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

7.3.3 Importing, using un-named columns

Delete the heading row from your spreadsheet and change the Rur-time error '2391"

value for 5™ parameter on the DoCmd.TransferSpreadsheet
command from True to False.

Field 'F1' doesn't exist in destination table 'Class Attendance.'

When | try this | get the error message shown in Fig 7.3.6.
| have no idea why.

Continue | End | Debug I Help

Fig 7.3.6 Error when using un-named columns
The same error will also occur when using named columns if there is a column in the spreadsheet that

is not also in the table. The reference to ‘Fn’ in the message does not mean spreadsheet cell or
column F or Fn, but means that the n™ column has a name that is not also in the table.

7.3.4 Importing, using a defined range

=]
Rather than using a named range you could have the range Ele Edt Vew Insert Format Tooks Data
defined on the sheet. Window Help -8 X
i3 ! 7 B g2
Change your spreadsheet to delete the named area DataArea 0 - I|l=== R I
(check how in Excel Help) and add three new rows above thedata, =g @@ v L 2@ ©-
as shown in Fig 7.3.7. Ad - f Class Mo
A B | ¢ [3
This sheet now has two sets of data which means that the sheet is ;—i;::'é%e
opened and read twice: Ex
1) To get the data range specified in A1:A2 (assumed to be a | 4]Class No_[Membership No
fixed range). % 2 -}
2) To read the data in the range specified by cell A2. |7 | 5 10
B 7 1
It is possible to use a macro in Excel to calculate the range 190 L 2
specified in cell A2, so that this adjusts automatically. This may be |11 -
preferable to requiring the Tutor (who may not be very familiar with i "« » wil\Details hestz 72| | LlJJ

Excel) to check and adjust a named range. These cells can then Draw~ [p | Agtoshapes- S W OO E @ 2
be locked and/or hidden; Access will still be able to read them. Sum=50 MM 4

Fig 7.3.7 Defining the range on the sheet

You will need to create a new table called CellRange with just one text column called Range. The
value in cell A2 will be read into here.

Rename your mylmportData procedure as something different (for example mylmportData1) and create a
new mylmportData procedure as shown in Fig 7.3.8.

The code is explained below:

Const strPath =“A:\"

Const myconCellRange = “AL1:A2"

Const myconSheet = “Details”

e The first constant is the same as before.

The second constant defines the fixed range on the sheet used to define in turn the data area.
The third constant specifies the name of the data sheet within the file. If this is not used than
Access assumes that the data is on the first sheet, which is fine as long as no-one inserts a sheet
in front of the data sheet. So it would be prudent to specify a named sheet in this case.

Dim strSheetRange As String
Dim strCellRange As String
Dim strFullPath
Variables to store ranges and the full path name for the file.

VBA Starting v5-1.doc Page 105 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

DoCmd.RunSQL “DELETE * FROM CellRange”
e As DoCmd.TransferSpreadsheet Will add to any existing data in the table, we need to delete any
previous (and thus unwanted) values from the CellRange table.

strFullPath = strPath & prmName & “ .xIs”
e Same as before.

strCellRange = myconSheet & “!” & myconCellRange
DoCmd.TransferSpreadsheet aclmport, , “CellRange”, strFullPath, True, strCellRange
strSheetRange = myconSheet & “!” & DLookup(“Range”, “CellRange”)
e The first line combines the name of the sheet with the fixed range. At run-time, strCellRange will
contain “Details!A1:A2”. Unlike the problem mentioned in Stage 4 of section 7.3.2, this works.
e The second line reads in the value in cell A2 and puts it in the CellRange table.
e The third line uses the DLookup function to get the value from the CellRange table, and combine it
with the name of the sheet. At run-time, strSheetRange will contain “Details!A4:B9”.

DoCmd.TransferSpreadsheet aclmport, , prmName, strFullPath, True, strSheetRange
e This reads the same spreadsheet again, this time to get the data in the second range and to put it
in the required destination table..

Public Sub mylmportData(prmName As String)
'read in spreadsheet into table of the same name

‘constants

Const strPath = "A:\" 'path for the input spreadsheet

Const myconCellRange = "A1:A2" ‘fixed cells for cell range on each file

Const myconSheet = "Details" 'need to specify sheet, otherwise assumes first sheet
'variables

Dim strSheetRange As String 'sheet range

Dim strCellRange As String 'cell range

Dim strFullPath 'path and name for spreadsheet

‘remove existing data from cell range table
DoCmd.RunSQL "DELETE * FROM CellRange"

'set up full path - assumes sheet is called prmName.xls
strFullPath = strPath & prmName & ".xIs"

'first get the cell range info into the CellRange table
strCellRange = myconSheet & "I" & myconCellRange
DoCmd.TransferSpreadsheet aclmport, , "CellRange", strFullPath, True, strCellRange
strSheetRange = myconSheet & "!I" & DLookup("Range", "CellRange")

‘then use the cell range to read the specified range into the table
DoCmd.TransferSpreadsheet aclmport, , prmName, strFullPath, True, strSheetRange

End Sub

Fig 7.3.8 Reading in data from a range specified on the sheet

7.3.5 Exporting data

This is simpler than importing as you do not need to match column headings in a spreadsheet with a
table, nor do you need to have some way of specifying the data range.

A system may have one or more functions that display query result dynasets; it could be useful to
offer the user the option of saving the data to a spreadsheet.

Look back at the example in section 1.6, where the query result showing the effect of changes that
may be applied to the Membership Fee is displayed. Add the following line to the cmdCheckFees_Click()

event, after the line for the DoCmd.OpenQuery statement.
myExportData stDocName, “CheckFees”

e myExportData is @ new public procedure (see Fig 7.3.9), which requires two parameters.
o The first parameter is the name of the table or query from which the data is to be exported.
This will therefore be the name already in stDocName in the wizard RunQuery code.
o The second parameter is for the filename of the spreadsheet.

VBA Starting v5-1.doc Page 106 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

Public Sub myExportData(prmQueryName As String, prmFileName As String)
‘ask if the user wants to export the data to a spreadsheet, etc.

'‘Const strPath = "A:\" 'path for the input spreadsheet
Const strPath = "VBA stuff\Trainer V5\"
Const myconExportMsg = "Do you want to save this file to a spreadsheet?"
Dim strFullPath As String
Dim strDateTime As String
Dim strFileName As String
If myYesNoQuestion(myconExportMsg) = vbYes Then
strFullPath = strPath & "Export\" 'assumes all files put in Export folder

strDateTime = Format(Date, "dd-mm-yyyy") & "_" & Format(Now(), "hh-mm-ss")
strFileName = prmFileName & "_" & strDateTime

DoCmd.TransferSpreadsheet acExport, , prmQueryName, strFullPath & strFileName
myDisplaylnfoMessage "data has been saved as Excel spreadsheet:" _
& vbCrLf _
& strFullPath & strFileName
End If

End Sub

Fig 7.3.9 Code for procedure to export data to a spreadsheet
Explanation of code in Fig 7.3.9:

Const strPath = “A:\" ‘path for the output spreadsheet

Const myconExportMsg = “Do you want to save this file to a spreadsheet?”

e strPath serves the same purpose as before, and here assumes that the output is to be on a floppy
disk.

e The second constant is simply to be used for a message/question box.

Dim strFullPath As String

Dim strDateTime As String

Dim strFileName As String

e strFullPath serves the same purpose as before, this time for the full path where the output file is to
be written to.

o strDateTime Will be used to store the system date and time. If it is required to ensure that each
output file is a separate file, then there needs to be some way of ensuring that the files have
unigue names; using the system date and time as part of the filename could be a useful way of
achieving this.

0 It could also be useful to add the user’s log-in ID to the filename; the Further VBA Trainer
shows how you can access this ID.
e strFileName Will be used to store the full path and filename of the output file.

If myYesNoQuestion(myconExportMsg) = vbYes Then
e Ask the user whether or not they wish to export the data. See Fig 7.3.10

strFullPath = strPath & “Export\” ‘assumes all files put in Export folder
e This line starts to set up the value in strFullPath. The code assumes that all exported data is to be
put in a folder called ‘Export’.
o0 ltis possible to ask the user where the data file is to go, but if the user enters the wrong
information the export may fail.

strDateTime = Format(Date, “dd-mm-yyyy”) & “ " & Format(Now(), “hh-mm-ss™)
strFileName = prmFileName & “_" & strDateTime

e Use the built-in Format function to format today’s date and time as a string.
e Add this new value to the name for the file.

DoCmd.TransferSpreadsheet acExport, , prmQueryName, strFullPath & strFileName
o Export the query dataset to the spreadsheet.

VBA Starting v5-1.doc Page 107 Version 5.1 — July 2005

il :=F Check Update Fees : Select Query

Category Mo

VBA Trainer - Getting Started Part 7 — Miscellaneous

myDisplayIinfoMessage “data has been saved as Excel spreadsheet:” _
& vbCrLf _
& strFullPath & strFileName
e Tells user where to find the spreadsheet file. See Fig 7.3.10.

End If
o Simply terminates the If.

Category Type | Membership Fee New Fee

Record: |4| 4 | 1 |>| |>*| of 7

1 Senior £26.00

2 Senior Club £30.00 | Chelmer Leisure and Recreation Cenl x|

3 Junior £10.00 1

4 Junior Club £15.00

c Cuor:]'gres;onary 1500 1 data has been saved as Excel spreadsheet:
s — A ExportyCheckFess_06-10-2004_20-03-30

6 Youln Clu x

7 Student
3) Do wou want ko save this file to a spreadshest?

.

Fig 7.3.10 Saving the Update Fees query result to a spreadsheet.

If you have added Category Type ‘Student’ (Category No = 7) as used in section 6.4 you will need to
need to change your code for your myUpdateFee function to cater for category No 7.

7.3.6 Some errors you may encounter

If the error has an identifiable error number, then you should be able to trap this via an on Error
statement in your code. You could then give an alternative error message. Or you could take
appropriate action, such as asking the user to input the filename again, or choose whether to cancel
or continue. Error-trapping is discussed briefly in this document and at more length in the ‘Further
VBA'’ Trainer.

(@) Run-time error 3044’": ‘<path>’is not a valid path. Make sure that the filename is spelled
correctly and that you are connected to the server on which the file resides.

This occurs when importing or exporting data and could mean one (or more) of the following:

1. The path in the code is incorrect.

2. The filename in the code is incorrect.

3. You are not connected to the network (if using a common network area).

4. You do not have permissions to access the network area (if using a common network area).

(b) Run-time error ‘3011’: The Microsoft Jet Database Engine could not find the file ‘<path>’.
Make sure the object exists and that you spell its name and the pathname correctly.

This occurs when importing data and normally means that the file does not exist in the folder

specified. See also Fig 7.3.5.

(c) Invalid use of Null.

This occurs when importing data and can mean that a spreadsheet has a blank row, a blank field
where data is expected, or the specified area includes blanks at the end. But this error doesn’t always
seem to happen for this condition. It may depend on the datatype of the field in the table.

(d) Run-time error ‘2391’: Field ‘Fn’ doesn’t exist in destination table ‘<name>’.
This occurs when importing data. See Section 7.3.3.

(e) Run-time error ‘3051': File is locked for editing.
This occurs when importing data, if the file is currently in use by another user. If the file is not vital to
the process, you could trap the error and give the user the opportunity of cancelling or continuing.

VBA Starting v5-1.doc Page 108 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

7.4 Backups, Compacting, etc

Read ‘Using Access97’ by Roger Jennings, published by QUE, pages 922-924 for some very good
advice. There should be a copy of the book in the library.

7.4.1 Making Backups

Do not forget the importance of providing backup and retrieval facilities for your database. For
yourself, save your database on more than one backup disk, and keep them in separate places. It is
recommended that you have a cycle of disks, with documentation to say at what stage each backup
was taken and what has been done since the backup. Keep printouts of code so that you can recreate
it if you lose it. For most students, these precautions will not be needed. But you can’t guarantee that
your database will be safe — remember, ‘it could be you?’

For a commercial system, backup, retrieval and logging procedures are vital. Any system that you
develop, be it a project or a system for a ‘real’ user, must have these procedures in place.

7.4.2 Compacting your database (keeping the size down)

Look at Tools 2Database Utilities for information on repairing and compacting databases. Also note
that databases that have records added to, and deleted from, them may need defragmenting at
intervals to speed up access and to reduce the size.

While you are developing your system, you may be experimenting with data, queries, forms and the
like. Access will grab extra space for each change that you make, but the unwanted bits are still in
your database, which can grow pretty large very rapidly. It is helpful periodically to repair and compact
your database as this will free up space and reduce the overall size. Access 2002 introduced the
facility to perform automatic compact and repair procedures on a database, whenever the database is
closed. Look at Tools 2Options, and then at the General tab. Also see the ‘New features for Access
2000’ page of http://www.cse.dmu.ac.uk/~mcspence/Access.htm .

Access needs adequate space on your machine to undertake this operation, as it creates a second
version of your database, copying over just the non-deleted bits, and deletes the original. You can
even lose your database if this operation goes wrong! (It's happened to me...). See Access FAQ 27
on the Frequently Asked Questions page of http://www.cse.dmu.ac.uk/~mcspence/Access.htm .

It may be wise not to use ‘Compact on Close’ and to make a back-up before attempting to compact
your database, just in case...

7.5 Linking to an external database
(separating data from the rest)

So far, in this database, the tables, queries, code, etc have all been contained in the same physical
file. However, in practice, tables and the rest (the application) tend to be separated, with the tables on
a server and the application on the local machine(s). The database with the tables is usually known as
the ‘back-end’ and the database with the application is usually known as the ‘front-end’.

This has various advantages:

e Other applications can run on the same tables (by linking to the tables required).

o For example, there could be an application for the Chelmer Leisure staff who register
membership details, make bookings etc, and another application for Management to use for
various management reports and statistics. The two applications could both use the same
back-end database.

e An application can be maintained and tested ‘off-line’, using a copy (not the real thing!) of the live
data for the final testing.

VBA Starting v5-1.doc Page 109 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�
http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 7 — Miscellaneous

o Distributing and installing a new version of an application is simpler (as it does not affect the data,
unless the table structure has been altered).

¢ You could replace a VBA application by a VB application if wanted (| think).
e Backing-up the data can be done without having to back up the entire application each time.

e Back up versions can be tested —it's a bit late to find out that the device is faulty when you need
to restore from a backup following loss or corruption of the main back-end database.

e This facilitates use of an application over a network with each user having a copy of the front-end
linked to the same back-end on a network server.

e Users cannot change back-end table design via a front-end application.
Look at Help for further information regarding linking external data and database objects.

Splitting a database is very simple to do. The following shows firstly a DIY method (here purely so that
you can see how to set up links should you need this in future and in case the Database Splitter
wizard is not installed on your machine) and secondly how to use the Database Splitter wizard.

7.5.1 DIY method

Do the following with your Chelmer Leisure database:

o Make two copies of your Chelmer Leisure database and call them CL Code and CL Data.
o0 Open the CL Data database and delete all queries, reports, forms, code modules — i.e. leave
only the tables remaining. This will be the back-end database.
o Open the CL Code database and delete all the tables. This will be the front-end application
database.

¢ With the CL Code (front-end) database open at the tables tab of the database window link to the
tables in the CL Data (back-end) version of the database by:
0 File 2Get External Data Link Tables
Select the required database (your CL Data (back-end) database) in the Link dialog box
Click Link
Choose ‘select all’ and click OK
That'’s it — the tables will now appear in the database window, but with an arrow to the left
hand side of the table icon. This arrow means that the table is a linked table —i.e. it is not part
of the database file, but links to a table in another physical file. See Fig 7.5.1.

e Open one of the tables in design view.
o0 Access will give a message telling you that you cannot alter the table structure within a linked
database — you can only alter the table structures within your CL Data database.
o Look at the property box for the table and note the entry under ‘Description’ — this gives the
full path to the linked database, plus the name of the table in that database.
o0 You can also see the link path in a ‘control tip’ box by moving the cursor over the table name
in the database window. See Fig 7.5.1.

e Try running some of the queries, reports, forms etc in your CL Code database — they should all
work exactly as before.

e Repair and compact the two new (CL Data and CL Code) databases, to free up unused space.
o If you have set the Main Menu to open automatically when the database is opened (see
section 4.2.4) you will get a message to the effect that the main menu is not available when
you open the CL Data database. Use Tools 2Startup to remove this option.

[eXNelNelNe]

Only the raw data tables and look-up tables need to be in a back-end database. Any intermediate or
temporary tables are probably best defined in (or definitions and data moved to) the front-end
application in order to avoid conflicts of use.

For example, the CellRange table from section 7.3.4 is now in the back-end database. This table

would be best as a local table as different users may be reading different spreadsheets and there
could be a conflict if two users are doing this at the same time.

VBA Starting v5-1.doc Page 110 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

g C L Code : Database {Access 2000 file format)

GfFopen B Desian “gpew | X | 2o i
Objects

Tables Create bable by using wizard
Create table by entering data
#+[E Bookings

wfE CellRomem
e 2\ Di0CUmEnts and SettingsiMaryiiy Documents\WBA stuffiBack and Front end +54C L Data.mdb

g =[]

Create table in Design view

a0 EEBE

Queties

Farms

Reparts

ALCETTIEET

Pages *] List
#[E Classes

#[Z Membership

*[E Membership Category

Macras

Modules

Groups » [

(#] Favorites | [*E
#[E Stock Level

Membership For 10 years report

RoomHalCourt

#[E Stock Level - no prices
+[H Title
#[E Tukor

Fig 7.5.1 CL Code (front-end) showing links to back end tables in CL Data
7.5.2 Using the Database Splitter wizard

This is much simpler than doing it yourself, if you have the wizard installed. Do the following
e Make a copy of your database (as the wizard will change it)

e Access the wizard via Tools = Database Utilities 2Database Splitter

e Choose the required directory when prompted

e Click on the Split button and the wizard will do the rest

Look at the contents of your database directory.

¢ You will see a new database with the name <myname>_be.mdb. This is the back-end database
with just the tables. Open it up and look at the contents.

¢ Your original database has now been changed to be a front-end database. Look at the tables —
these are now links to your back-end database as in Fig 7.5.1. Everything else is the same. You
may need to repair and compact it to free up unused space.

7.5.3 Re-linking after a back-end has been moved or renamed

If you look at Tools 2Database Utilities you will see an option for Linked Table Manager. Use this to
update links if the back-end database location is moved or renamed. If the wizard is not installed, then
it is simple to do it manually using File 2Get External Data 2Link Tables - see section 7.5.1; you will
need to delete the old links first.

options 2ix
. Wiew I General | EditjFind | Kevboard I Datashest | Forms/Reports
7.5.4 Multi-User access to a back-end. Pages Advanced Inkernational | speling | Tables{Queries
. DOE operations r—Default File Format
Many (most?) database systems will be used by B e B s [Rezess 2000 |
several people, each with a copy of the front-end ¥ Enable DDE refresh
—Default open mode

application linked to the same back-end tables.
So, what happens when two (or more) people
wish to access and update the same record?

Using Tools 2Options you can specify what you
want to happen. The Advanced tab contains the
dialog for you to specify the options that you
want. The settings shown in Fig 7.5.2 are the
default settings.

MS Access Help contains information about what
these various settings mean. Use the Keyword
share, and look at items titled Share a database
and Set options for a shared database.

VBA Starting v5-1.doc

Command-line arguments:

& shared

OLE/DDE timeaout (sec):
Refresh interval {sec):
Mumber of update retries:
OQDEC refresh interval {sec):

Update retry interval {msec):

0
0

1500

1177

i Exclusive

r~Default record locking
% Mo locks
" all records
" Edited record

250

[~ ©pen databases using record-level locking

0k I Cancel | Spply

Fig 7.5.2 How to specify sharing options

Page 111

Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 7 — Miscellaneous

7.6 Preparing your database for distribution

7.6.1 Removing the database window and menu bars

Before you experiment with any of this, make a back-up copy (or two) of your database so far. In a

distributed version you would not normally

want the user to be able to get at any

design features or tables. This could also

apply to you.

Look at the Tools >Startup dialog box

shown in Fig 7.6.1 and discussed in Fig
7.6.2. You specify here the options that
you want for your distributed version. If

you right-click on an item you

litle What's This button, and if you click
on that you will get a brief explanation of

the function of the option.

will get a

Application Title: Display Form/Page: K

=
Cancel |

ICheImer Leisure and Recreation Centr ICheImer Leisure Main Menu
[Display Database "Window

[v Display Status Bar

Application Icon:
IC:'l,DDcuments and Settings\Mar J
¥ Use as Form and Report Icon

Shartcut Menu Bar:

I(default)

[allow Built-in Tookbars

[allow Toalbar{Menu Changes

Menu Bar:

I(deFauIt)

I allaw Full Menus

[Allow Default Shorkouk Menus

[=

™ Use Access Special Keys

(Show Database Window, Show Immediate
Windaw, Show YB Window, and Pause Execution)

21

Fig 7.6.1 Suggested options for distributed version

Option

Restart
needed?

Comment

Application Title

No

Replaces the default text of ‘Microsoft Access’ in the bar at the
top of the application window. Note that you cannot reference
any public constant such as myconChelmerName in here.

Application Icon

No

Replaces the default MS Access icon in the bar at the top of
the application window. Must be a .ico or .bmp file.

Menu Bar

Yes

Replaces the default MS Access menu with the specified
menu of your own. (Look up Create a Toolbar in Access Help).

Allow Full Menus

Yes

Specifies whether or not you want the user to have access to
all menus and be able to make changes to the database
structure.

Allow Default Shortcut
Menus

Yes

Specify whether or not you want the user to use right-click to
see the default shortcut menus.

Allow Special Keys

Yes

Specify whether or not you want the user to be able to use
special shortcut keys to give access to various design
features.

Display Form/Page

Yes

Specify the form or page that you want to be displayed
automatically when the application is opened. Leave blank if
you do not want a form/page displayed.

Display Database Window

Yes

Specify whether you want the database window to show
(normal when developing) or be hidden (normal for a
distributed version).

Display Status Bar

Yes

The status bar displays various information messages,
including field comments in table design when the field is
bound to a control on a form. The text displayed is from the
StatusBarText property of the control on the form. Use this
option to specify whether or not you want this bar to show.

Shortcut Menu Bar

Yes

Specify a custom shortcut menu to use for forms and reports
in place of the default MS Access bar.

Allow Built-in Toolbars

Yes

Specify whether or not you want the default MS Access
toolbars to be available. These allow access to design views,
so would not normally be wanted for a distributed version

Allow Toolbar/Menu
Changes

Yes

Specifies whether or not the user can make changes. If
cleared, then the user cannot use right-click or the View menu
to access design toolbars; this is what you would normally
want for a distributed version.

VBA Starting v5-1.doc

Fig 7.6.2 Discussion of options

Page 112 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

Fig 7.6.3 shows (in a minimised window) the effect of applying the options shown in Fig 7.6.1. This
screenprint shows what will be seen when the database is first opened. Note the menu bar, the
application title and the application icon. The database window is hidden (and not just behind the main
menu!). Right-clicking on the menu bar or the menu form has no effect.

_* Chelmer Leisure and Recreation Centre _1Ol=
- File Edit Insett Records ‘Window Help Type a question for help =

[MainMenu =

Close Menu
Friday 08/10/2004 12:39:35 and EXit

CHELMER LEISURE AND
RECREATION CENTRE

Record Class
Attendance

Run ‘Members before date' report |

Farm Wigw MM A

Fig 7.6.3 Effect of options
For further information, check MS Access help.

If wanted, you can also use the same icon for a desktop shortcut for the file.
e Create a shortcut

Right-click the shortcut to see the properties

Click the ‘change icon’ button

Select the required picture.

Tip: If you remove the menus and have forgotten to make a back-up copy first, you can normally over-
ride the Startup options by pressing the SHIFT key down when you open the database. But if the user
is also familiar with this, then they can also use this to get at the table and query design. As stated in
section 7.5, if the tables are in a back-end database, then the table designs can only be viewed from
the front-end, they cannot be changed.

7.6.2 Creating MDE (Microkernel Development Environment) files

VBA is an interpreted language; as you have been using it so far each statement has been compiled
and run whenever you have activated the event. This is not efficient for a ‘live’ system.

With some other languages, such as COBOL, VB, Java, C++, you can create .exe (executable code)
files. With VBA, a .mde file is the equivalent of this.

In a .mde file, all code is stored in compiled format, so the code is not available to the user, or to the
developer, nor can the forms, reports or code modules be modified. It should also be smaller (as raw
code has been removed) and run more efficiently.

To create an MDE version, do the following:

e Create a copy of your code database (‘CL Code exe’, for example). The conversion of a database
to .mde format works on the existing version of the database so Help advises that you make a
copy.

o Your file format must be for the version of Access used to create the MDE file; if you are using
Access 2002 (or 2003) you must convert it to that format first.
= Use Tools 2Database Utilities 2To Access 2002 file format.
= Note that this means that all users must have a version of Access that can read the
chosen file format.

VBA Starting v5-1.doc Page 113 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

e Using the copy with the correct file format, do:
o Tools >Database Utilities ?Make MDE File
o Confirm the name and directory and click on Save.

e Close Access and check the folder where the MDE file should be. You will see a database with a
new icon, as shown in Fig 7.6.4. This is the MDE file.

25 V5 2002
Format

Type: Microsoft Access MDE Database
Date Modified: 23/10/2004 13:03
Size: 1,30 MB

Fig 7.6.4 Icon for normal database and for MDE file

e Open the MDE file.

o Try amending forms, reports, macros, data access pages or code modules — the design and
new boxes are greyed out, so that the designs and code cannot even be viewed let alone
changed.

o But you can change table and query designs.

e You can set Startup options (See section 7.6.1) with an MDE file, but can still use the SHIFT key
to over-ride these.

e For further information, look up mde in the Access Help Answer Wizard.

7.7 The WITH statement

Access 2002 Help states:
“The With statement lets you specify an object or user-defined type once for an entire series of
statements. With statements make your procedures run faster and help you avoid repetitive typing”.

The statement has not been used earlier in this Trainer as those readers who are struggling with VBA
may not want an added complication, even though the with statement is straightforward to use. Those
of you who can cope with VBA (and who have read this far) may like to know about it, and use it in
your own applications. Some VBA Help examples use With.

7.7.1 Using a single With statement
The with statement is useful if you are referencing many properties of an object. Instead of repeating

the object name for each property, you can set it just once using with. Fig 7.1.1 shows the code from
Fig 3.2.5 as it is in that figure, and rewritten using with.

Private Sub myCheckReorderLevel()
'highlight low stock items

If [Stock] < [re-order level] Then
[re-order level].FontBold = True
[re-order level].BackColor = vbRed

Else
[re-order level].FontBold = False
[re-order level].BackColor = vbWhite

End If

End Sub

Private Sub myCheckReorderLevel()
'highlight low stock items

With [re-order level]
If [Stock] < [re-order level] Then
.FontBold = True
.BackColor = vbRed
Else
.FontBold = False
.BackColor = vbWhite
End If
End With

End Sub

Fig 7.7.1 Comparison of the same code with and without the With statement
(original code is in section 3.2.2.2)

VBA Starting v5-1.doc Page 114 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 7 — Miscellaneous

Points to note:
¢ The with block starts with a with <object name> statement and ends with an End with statement.

¢ You now refer to the object properties by coding the full-stop and then the property name.
o The little pop-up prompt box (see Fig 1.1.2) is provided as before.
0 You can still code <object name>.<property>, where <object name> refers to the object on the with
block, as before (a bit pointless if within the with block, but Access does not object and the

code appears to run OK). For example, you could still code
[re-order level].BackColor = vbRed

o If you want to set a property for another object within the with block then you must specify this
in full. for example, if you wanted to set the forecolor on the Stock field to red when the stock

level is low (not forgetting to put it back to black when it is OK), then you must code
Stock.ForeColor = vbRed

Further information and advice from Access 2002 Help:

e “Once a with block is entered, <object> cannot be changed. As result you can'’t use a single with
statement to affect a number of different objects.”

e ‘“In general it's recommended that you don't jump into or out of with blocks. If statements in a with
block are executed, but either the with or End with statement is not executed, a temporary variable
containing a reference to the object remains in memory until you exit the procedure.”

7.7.2 Using nested With statements

with statements can also be nested within each other. Access 2002 Help states:

“you can nest with statements by placing one with block within another. However, because members
of outer with blocks are masked within the inner with blocks, you must provide a fully qualified object
reference in an inner with block to any member of an object in an outer with block.”

Look at Fig 7.7.2. This is the code from Fig 3.6.8 rewritten to use with statements, one nested within
the other. It's a bit contrived, as there is no need to use nesting with this example, as two separate
blocks could be used instead, however it serves to illustrate the point.

Private Sub IstMember_DbIClick(Cancel As Integer)

With IstMember
If .Column(5) = True Then

txtSex = "Male" 'this will be used by IstClass query
Else

txtSex = "Female"
End If

txtLastname = .Column(1) 'show member lastname on form

With IstClass
.Requery 'requery IstClass and...
\Visible = True "...make it visible

‘any reference to IstMember in here must be fully qualified
End With ‘for IstClass

End With ‘for IstMember

End Sub

Fig 7.7.2 code from Fig 3.6.8 rewritten to show how to nest With statements

7.7.3 Using With statements with parameter objects

With statements can also be used to reference objects passed as parameters. Fig 7.7.3 shows a very
simple example of a form where label properties are set in a sub procedure that has the label name
passed to it at run-time. This is not a particularly useful example in itself, but it serves to illustrate the
principle.

VBA Starting v5-1.doc Page 115 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 7 — Miscellaneous

Option Compare Database
Option Explicit

With prmLabel
.ForeColor = prmColour
.Caption = prmCaption
End With

End Sub

Private Sub Form_Load()

myLabelProperties IbITest1, vbRed, "New Caption"
myLabelProperties IblTest2, vbBlack, "Another New Caption"

Private Sub myLabelProperties(prmLabel As Label, prmColour As Single, prmCaption As String)

-+ are the names of the
" # two labels on the form.

IbITestl and IblTest2

Label

j # Detail

1 ahel

Mew Capkion '

1- Another Mew Caption

End Sub
&5 With parameter example : Form Aglil B With parame.er example : Form _IDlll
|l||-|-1-|-2-|-3-|-4-|-5-|-S-|-?-|-8-|-9-|-10‘ >

Fig 7.7.3 Example form with code that sets label properties via a sub procedure using With

7.8 Exercises

7.8.1 Member bookings tab on Membership form

Add a new tab to the membership form of Fig 7.2.3, and show all bookings made so far this year for

the member.

7.8.2 Record Class Sales

Provide a facility to allow Class Tutors to record sales on a spreadsheet for the application to read

and update the Stock Level table.

7.8.3 New Chelmer Application

Open a new database and link it to the back-end tables.
e Create a query and a report.

e Add a facility to display the query result and save it to a spreadsheet if the user so wishes.
This will demonstrate that you can use the same set of tables for more than one front-end application.

7.8.4 Use the With statement

Change your code in Fig 5.3.1 to use the With statement.

VBA Starting v5-1.doc Page 116

Version 5.1 — July 2005

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

PART 8 - WORKED EXAMPLES OF BOOKING

PROCEDURES
In this part of the Trainer you will see...
e ...worked examples illustrating use of some of the VBA discussed earlier in this document.

e Example 1is for Member Bookings of Courts.

0 Uses list boxes to show free/booked courts. The query for each list box is based on an outer
join query with a table listing all allowable booking times, which selects bookings for a given
date. The Court list boxes can be adjusted to show all information for a court (booked and
free slots) or free slots only.

o Double-clicking on a free slot in a Court list box starts the booking process by putting the
details in the booking record.

o Double-clicking on a Member list box to allows the user to choose the member for the
booking.

o Double-clicking on a booked slot allows the user to delete the booking.

o Two methods of checking for simultaneous double-bookings are shown.

e Example 2 is for Class Bookings of Rooms/Halls.

o Allows the user to write several booking records at once simply by specifying the start and
end dates. A class runs on the same day each week, at the same time.

o Shows a method of listing results in weekday (Sun, Mon, Tue, etc) order.

o Shows how to write temporary records to a table, using embedded SQL (including a method
of coping with UK/USA date formats in SQL), then uses this table for an outer join query.

o The user chooses the class by double-clicking on a list box, then entering the start and end
dates for the run of the class, and choosing the room.

o Deletions can be done one-by-one in a similar manner to that for Example 1.

e Example 3 shows how to set up a diary page booking form.

o Uses a Crosstab query based on an outer join query to select bookings for a required date.

o A method is demonstrated of specifying a form parameter criterion for the Crosstab query.

o Conditional Formatting is used to distinguish between booked and free slots on the Booking
diary page form.

o A method is shown of catering for the situation where the Crosstab query does not have all
the columns that the form is expecting.

o The user can then click on slots to make and delete bookings, and the form is refreshed to
show the changes.

See http://www.cse.dmu.ac.uk/~mcspence/Access.htm for some more example databases,
including booking items (cars, hotel rooms, etc) for a period of days.

8.1 Introduction

In this document so far you have seen how to use VBA to improve various aspects of the functionality
of the Chelmer Leisure database system: writing private/public procedures; data maintenance;
automatic calculations; validation of input data; searching for, and filtering, records; using combo and
list boxes; using menus; using form parameters; improving reports. This Part of the Trainer will show
how to use some of the techniques shown so far in a further function for the database.

One of the main functions of the Chelmer Leisure and Recreation Centre is the booking of Courts and
Classes, but the only booking procedure so far available is that of the very simple booking form in Unit
16 of McBride. This form is not user friendly: it does not assist with data entry; it does not show the
user the room availability; and it does not prevent double-bookings.

Many students have booking systems for Projects and Placements, so these examples here are to
demonstrate some ways that you may find useful if you have to implement such a system, and to
illustrate further uses of the VBA that you have seen so far. They are primarily intended for students
on year 2 or higher, but keen year 1 students may also find the examples of interest.

The methods illustrated here use a mixture of standard Access point-and-click features and VBA. The

solutions are not complete, fully-working solutions, but are partial solutions to demonstrate the ideas,
leaving you to finish, or to adapt, them for your own Projects.

VBA Starting v5-1.doc Page 117 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
The examples here are based on several assumptions, guessed at from information provided in
McBride:

Courts are booked by Members only; Sports Halls and Fitness Suite are booked by Classes only
(see page 240 of McBride).

All rooms can be booked between 09.00 and 20.00 (9 a.m. to 8 pm) inclusive, on all days of the

week, for periods of one hour only.

o A system that allowed the user to make several bookings at the same time (on the same
booking number) would need another table, being the ‘many’ end of a one-to-many
relationship with the Bookings table. The design of the Chelmer database has not got such a
table.

Public Const myConMember = True
Public Const myconClass = False
Public Const myconCourt1 = "Court 1"
Public Const myconCourt2 = "Court 2"

Before you start, add the Public constants shown in Fig 8.1.1 to
an Access module. These constants will be used in some of the
later examples. Using constants in this way will ensure

‘No

‘Yes

consistency, and is better practice than using literal (in this case
String and Boolean) values in the code.

Public Const myconCourt3 = "Court 3"

Public Const myconFSuite = "Fitness Suite"
Public Const myconSHall1 = "Sports Hall 1"
Public Const myconSHall2 = "Sports Hall 2"

Fig 8.1.1 Public Constants for use in later code.

8.2 Example 1 -Member Bookings for Courts

8.2.1 Create table of booking times.

=I5y 1o/ x|
. | Field Marne DataType | escriptiof = TimeSlot
In order to list all free and booked slots, and M Time:Slat Cate/Time x| y
also to make it easier for the user to select a m
valid time, a table of allowable times will be -]
needed. Create a table for all the possible ; -
. . i . Field Properties —
booking times as shown in Fig 8.2.1. ||
General | Lookup |
For a system where bookings are to be every rorme® Short Time ||
. . nput Mask
15 (or 20 or 30...) minutes, simply set the Caption —
table rows as 09:00, 09:15, 09:30, etc. Default Yalue —
Yalidation Rule ||
. Walidation Text |
If breaks (lunch-time, etc) are needed, then Required Yes
simply miss these off. Indexed ‘fes (Mo Duplicates) ;
IME Mode Mo Control
IME Sentence Mode Mone Record: M I P II_

Fig 8.2.1 BookingTime table, in design and datasheet views.

8.2.2 Start the Court Bookings form.

IR
Create a simple wizard form called CourtBookings based on Erter Date for Booking, [
all the fields from the Bookings table, except for the Class No. "
“/,///‘F Booking No oo
Add an unbound text box called txtDate To the form header.
Foom/Hall/Court I
In the Form_Load event code (see section 2.6.1): Member/Class [
‘open form in ‘new record’ mode Membership Mo I
DoCmd.GoToRecord , , acNewRec
[rate I
This form will be developed into the form that will allow the Time |
user to see court availability, choose members, and Record: 14| [3% o [pi]o+] of 34

make/delete Member court bookings.

Fig 8.2.2 Initial CourtBookings form

VBA Starting v5-1.doc Page 118 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

8.2.3 Create Query to see Court availability.

Create a simple inner join (i.e. normal) query to list bookings for Court 1 for the date in the header of
the new CourtBookings form. Use a date of 13/5/1996 as this matches data in McBride for the
Bookings table. This query will show the booked slots for the date, but not the free slots.

gzt Court1 Bookings : Select Query - |EI|5|
2 Court] Bookng Fee e Eooking Mo | Membership Lastname | Firstname| Title

19 2 18:00 Cartwright Denise Irs

Col MembersHN {Autolumber) dutolumber)

#* ke

No Membership N
FeoomfHall/Court Category Mo
MemberClass oo Lastname T Record: 14 I 4 Il 1 K I 4] IP*I of 1
Membership Mo

Firstnarme
Class Mo Title
Date Skreet
Time Town LI
-
Kl LIJ
Figld: |Booking Mo = | Membership Ma Tirne Lastname Firstniame Title RoomfHallfCourt | Date =
Table: |Bockings Membership Bookings Membership Membership Membership Bookings Bookings
Sork:
Shaw:]
Criteria: "Court 1" [Forms]![CourtBookings]! [ExtDate]
or:
A 3

Fig 8.2.3 Inner Join (normal) query to see bookings for the date.

To see the free slots as well, we need an Outer Join query; see Access FAQ 18 What is an Outer

Join? on http://www.cse.dmu.ac.uk/~mcspence/Access.htm. This where the BookingTime table from
section 8.2.1 comes in.

Create a second query as shown below, using the BookingTime table and the Courtl Bookings query.
Create a join between the tables (joining the times) and right-click on the join.

Left Table Mame Right Table Mame
g=f Court1 Availability : select Query

j IBookingTime j
Left Column Marne Right Calumn Marne
OUre
Time | |Timeslot -
. | =l [
. 1: Only include rows where the joined figlds From both tables are equal,
Biooking Mo

: " 2 Inchude ALL records From 'Court] Bookings' and only khose records From
Join Propetties —— E 'BookingTime' where the joined fields are equal.
\N_ f* 3: Include ALL records from 'BookingTime' and only those records Fram

'X. Delete 1 ‘Courtl Bookings' where the joined Fields are equal.

: - oK I Cancel I Mew |
!T|tle | |
[l | o

Figld: | Timeslot Membership Mo Booking Mo Laskname Firstname Title =
Table: |BookingTime Courtl Bookings Courtl Bookings Courtl Booking: | Courtl Booking Courtl Bookings |
Sork:
Show:
Criteria:
or: i
| | 3

Fig 8.2.4 Creating an Outer Join query

Select Join Properties and choose the option shown; you want to see all booking times, with matches
where bookings exist. Note that the line that joins the tables will now have an arrow pointing to the
Court1 Bookings query (see Fig 8.2.8). Save the query as Courtl Availability.

VBA Starting v5-1.doc Page 119 Version 5.1 — July 2005

http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#What is an Outer Join#What is an Outer Join�
http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#What is an Outer Join#What is an Outer Join�
http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started

Now if you run this query (with the CourtBookings
form open and a date of 13/5/1996 entered in txtDate)

Part 8 — Worked Examples of Booking procedures

g8 Courtl Availability : Select Query =101 x|

TimeSlot Membership| Booking Mo Lastname |Firstname| Title
4

09:00
10:00
11:00
12:00
13:.00
14:00
15:00
16:00
17:00
18:00
19:.00
20:00

futoMumber) (AutalMumber)

A—
Record: |<| 4 || 1 » |>||He| of 12

you will see a row for all the timeslots with bookings
where they apply. See Fig 8.2.5. Outer joins are
extremely useful in cases like this. Have a look at the
SQL and compare it with that for a ‘normal’ query (an
inner join is the default).

19| Cartwright Denise hdrs

Fig 8.2.5 Result of Outer Join query to list free and available time slots.

8.2.4 Use the Outer Join query for a form list box.
I ListBowslstCourty

E IIstCourtl j

Al |

Add a list box to your form and base it on the Courtl Availability

query. When prompted by the wizard, choose not to save any of the
fields; code will be used to put list box contents in form fields in a
double-click event for the list box (the wizard does this on a
single-click event).

Formatl Data | Event | Other
ourt1

Table/Guery
Court1 Availability

es
.« 1.3cm;0crn;0cm; 2,54 9cmm; Ocm; Ocrn
.1

Set field properties as showns

.............. Mo
Mo Control
Mone

Validation Rule
Validation Text
Status Bar Text
Visible
Display When . .

@& 0 0 0 600000000000 Mo

Multi Select ..o Maone

TabStop. ..o e es

TabIndex . o.ovvvvivnnn 6
oLefE e 7.143cm

MWD oooooooooooooooooo 0.52%9m

Width . ..o 3.89%m

Fig 826 Court list bok__broperties.

The query has many fields for the booking details, as they will be needed in subsequent code, but
they are not all required to be seen in the list box.

See section 3.6 for information regarding list box properties.

VBA Starting v5-1.doc Page 120 Version 5.1 — July 2005

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.2.5 Do more on the CourtBookings form and the Courtl Availability query.

Set various form properties and controls as shown in Fig 8.2.7.

txtDate — used for user to enter IstCourt1 — list box based on
date for booking, and by the query Court1 Availability.
queries for the court list boxes Disabled in field property.

B2 CourtBookings : Form B m[

O B R EEEE R R R R SRR B E X =
' :I # Forrm Header \

; -
- [|Enter Djate fu:urEu:u:uking:| |L|n|:u:uunu§
|
|| # petail

_ || [Bockidg Mo |[Bockind o | Cout f Avatetiity] | |

- |Inbound

1 iF!._.._.meaHf’E._..:rt i Froemthhaib S i B
- |Meml:uf=rship My | bl embe ship|

5 I
- |Date | [1ate

E': [Time: HTime || J |
! J y

- |Meml:| er/Clazs | Meml:ue|

4 [i
_ 1‘

5 I
N / I I I

g crdCourmk L
Z |L|n|:u:| d

Form Footer

Booking table bound fields set to txtCourtParam — textbox cmdCourts — non-
Locked = Yes, BackStyle = that will be used by the wizard button that will
Transparent and SpecialEffect = Court1 Availability query to be used to toggle
Sunken, as these fields will not be select all slots or just the IstCourt1 (and the
used for user data entry. free slots. It will contain the other listboxes when
Move Member/Class to the end of values “All” or “Free”. added later) between
the group and set Visible to No and Remove the label and set seeing all slots and
Default to Yes, as this field will the Visible property to No. seeing just the free
always be for member bookings. Set the DefaultValue slots.

property to “Free”.

Fig 8.2.7 The CourtBookings form so far, in Design View

Change the Courtl Availability query to reference txtCourtParam as shown in Fig 8.2.8.
The criterion for the Lastname field is:

Like lIf([forms]![CourtBookings]![txtCourtParam]="All","*",Null)

At run-time, if txtCourtParam = “All” the criterion is setto Like “*” so that all rows are selected.
Otherwise the criterion is set to Null, so that only rows where Lastname is Null (the free slots) will be

selected.

The IIf function is extremely useful in situations like this where you want to set a variable criterion.
Look at VBA Help for more information.

VBA Starting v5-1.doc Page 121 Version 5.1 — July 2005

gzt Courtl Availability : Select Query

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

=101

TmeSiot Booking Mo
Membership No

Tirme
Lasknarne
Firstname
Title

=

-
< | ,
Field: | Timeslat Membership Mo |Booking Mo Lastname Firstnarme Title =
Table: |BookingTirm [Courtl Booking |[Courtl Bockine [Courtl Bookings Courtl Bookings | Courtl Bookings
Sork:
Shows:
Criteria: Like IR forms]! [CourtBookings] [kxtCourtParam]="all","*" ,Mull) Or Is Mul
ar: x
al 1 N |_|

Fig 8.2.8 The query using the value in txtCourtParam to select all slots or just the free slots.

8.2.6 Viewing Court availability.

So far, only one line of VBA has been coded (section 8.2.2) plus the use of the IIf function in section
8.2.5. The form has been set up with a date parameter txtDate and a list box IstCourt1 that uses a query
based on the txtDate and the value in txtCourtParam.

Add the code shown in Fig 8.2.10 to your code module for the CourtBookings form. Now you can
enter a date in txtDate, see the free slots for the date in IstCourt1, and click on the emdCourts button to
toggle between seeing all the slots and just the free slots.

Add list boxes for Courts 2 and 3, using the method shown in the previous sections for Court 1 and
check the code out with these new list boxes. Uncomment the lines in Fig 8.2.10 for IstCourt2 and
IstCourt3.

Add a list box for the members with provision for a filter, as described in section 3.6.3. Set the Enabled
property to No. This list box will be used later for making bookings. Choose not to save the
Membership No.

Your form should now look like that in Fig 8.2.9, and you can enter a date and see availability and
bookings for each of the Courts. If you want to exit without making a booking (not that you have any
choice as yet), simply close the form.

ol
Enter Date for Booking: |13/5/1996
3 Eacking Mo ButoHumbeT] Court 1 Awailability Cc!urt 2 Avwailability Court 3 Availability
Timeslat | Lastname Timeslot [Lastname TimeSlat | Lastname
ReomvHal/Cowt [] 0300 09.00 0300
Membership M 10:00 10:00 10:00
sneiphe [] 1100 110 100
Dale l:l 1200 12:00 1200
1300 1300 1300
Time] 14:00 1400 14:00
15:00 15:00 15:00
16:00 16:00 16:00
1700 17:00 1700
1800 | Carbwright 18:00 18:00
1500 15:00 1500
Reset member ist oo 2000 2000
enter start etters of surmame bo narmom Hie list iSee fiee slols ook
Double-click on raw toselect member
Membership Ne] Lastname | Firstname [Title [Post Code [Date of Bith -
11 Ali Dravid e CH4BKD 14/07/4133
g Barrett Martha & trs CHI3DR 251141960
2 Cartwright Derize Irs CHA 2EY 2941141960 Cancel Booking
15 Davies Sandra M Mrs CHI 1 0140241965

17 Everett Alan br CHI3C) 304071357 Mezo Bl

4 Forgpthe Ann M Migs 05/08/1973
13 Gray Ivor P Mr CHI7ER 12/04/1947 Confimm Booking

7 Harris David) Hr CH38PS 22/05/1928
5 Jameson Donna Miss CHZ¥FM 0441241970
20 Jones Edward R Hr CH290L 22/12/1958
19 Locker Alison Miss CH38UH 301241983
18 Locken Liam Mr CH3IBUH 3041241983
3 Perry Jason R Mr CH1 8 0370641982
B Robinzon Petra tiss ST1020Z 07/07/1984 LI

Record: 4| 4 [[7 23 o [mi]re]of 23
Fig 8.2.9 the CourtBookings form after a booking date has been entered and showing all bookings.

VBA Starting v5-1.doc Page 122 Version 5.1 — July 2005

VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

Option Compare Database
Option Explicit

Const myconSeeFree = "See free slots only"
Const myconSeeAll = "See all slots"

Const myconFree = "Free"

Const myconAll = "All"

Private Sub Form_Load()

‘open form in 'new record' mode

End Sub

Private Sub cmdCourts_Click()
‘allow toggling between free and all timeslots
'just one button for all list boxes

With cmdCourts
If .Caption = myconSeeAll Then
txtCourtParam = myconAll
.Caption = myconSeeFree
Else
txtCourtParam = myconFree
.Caption = myconSeeAll
End If
myRequeryAll
End With

End Sub

Private Sub txtDate_AfterUpdate()

)

'constants for toggling list boxes between Free and All slots -

DoCmd.GoToRecord , , aCNeWREC -wvvvve

'requery list boxes to show new contents @

These may be better as Public
Constants in an Access module,
as they then can also be used for
Class bookings See section 8.3.6.

~~~~~~~~~~~ - Already coded in section 8.2.2

'seeing just free slots?
‘change to seeing all slots
'parameter is used by queries 'Courtn availability'

‘change to see free slots only

Separate procedure at
end of this coding.

‘user has entered date for booking - set up each listbox for the date

myEnableList IstCourt1 ¥
‘ myEnableList IstCourt2
‘ myEnableList IstCourt3

End Sub

cmdCourts.Enabled = True
cmdCourts.Caption = myconSeeAll
txtCourtParam = myconFree

With prmList
.Requery
.Enabled = True

End With

End Sub

Private Sub myEnableList(prmList As ListBox) €~

‘Enable Court listboxes and set button caption etc.

‘requery listbox to show slots for the required date.

Calls common procedure.
Date validation not coded yet.
Won't compile until IstCourt2
and IstCourt3 are created.

Common procedure, so it
can be used for all court list
boxes.

Common procedure, also

Private Sub myRequeryAll() <

IstCourt1.Requery
‘IstCourt2.Requery Py

'requery listboxes to show new contents

used when booking made or
deleted in later sections.

‘ IstCourt3.Requery i

End Sub

Won’t compile until IstCourt2
and IstCourt3 are created.

Fig 8.2.10 Code to use the date in txtDate to enable and use the Courtl list box.

Note how having common procedures can really save you a lot of time. Note also that you can pass
various objects (such as list boxes) as parameters; see the prompt list when you type As to choose the

datatype.

See section 7.7 for information about the with statement.

VBA Starting v5-1.doc

Page 123

Version 5.1 — July 2005




VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

A possible test plan for the work done so far (just viewing Court availability) is shown in Fig 8.2.11.

Note that the date of 13/5/1996 Is used as this has a Court 1 booking in the data in McBride.
Eventually, the date entered in txtDate will be validated, and dates in the past will be rejected, but for
now we are just checking the working of the list boxes.

Test No | Data Reason for Test Expected result
1 |- Initial state of form when | ¢  Booking table fields show as locked, flat and
opened. grey.
e Cannot see Member/Class field.
e All three Court list boxes and associated
buttons are disabled.
e Member list box and controls disabled.
e The query parameters are not visible.
e Courts command button states “See All”.
e Form opened ready for new record.

2 13/5/1996 Enter date for booking e All list boxes enabled when date entered.
(this has one booking for | ¢  Court 1 list box shows all except booked slot.
Court 1in McBride data), | « Court 2 and 3 list boxes show all slots as free.
see Court list boxes, e Can click on Courts command button to see
toggle to see free and all contents of Court 1 list box change to
slots for Court 1. show/hide bookings. Caption of button also

changes to reflect the current situation.

2 More Add bookings directly to e All court list boxes show appropriate free slots
bookings for | Bookings table before (matches the new data in the Bookings table).
various times | opening form. o Clicking on Courts button toggles between
for all three Testing operation of all seeing all and seeing free slots for each Court.
courts, for court list boxes. e Booked slots all show correct Lastname.
13/5/1996.

3 |- Close form No record added to booking table when user

merely views court availability.

Fig 8.2.11 Possible test plan for viewing Court Availability on CourtBookings form.
Incremental development and testing is a useful technique for complex functions.

8.2.7 Making a Member book

Now we are almost able to make

ing for a Court.

B3 Court Bookings

Enter Date for Booking: |1 3/5/1998

=10l x|

these bookings.

Bookings will be made by the

user...

e ...entering the required dat

e ...double-clicking on a free slot—]
in the required Court list box

¢ ...double-clicking on the
required row in the Memberist
box.

See fig 8.2.12 for how the form
will look when a booking is made,
and Fig 8.2.13 for the new code
to be added to the
CourtBookings form.

13/5/1936]

Foom M3l Court
Embership Ho
Date

Time

—

Reset member list I

enter start letters of sumame to namow the list:
r

Double-click on row to select member

Court 2 Availability
TimeSlat [ Lastname

Court 1 Awailability Court 3 Availability

TimeS lot [ Lastname
03:00

[TimeSiot [ Lastname
09:00

03.00
10:00
11.00

10:00
11:00
12:00
13:00
14:00
15:00
16:00

See all slots

VBA Starting v5-1.doc

Record: 14 1| 34 b [ el k] of 34

Fig 8.2.12 making a Member Booking for a Court

Page 124

Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

Private Sub IstCourt1_DbIClick(Cancel As Integer) :
'user has selected a slot in this listbox i Code a double-click event for

. each Court list box. This calls
i a common procedure.
End Sub . See also Fig 8.1.1.

myCourtDbIClick IstCourt1, myconCourt1

Private Sub myCourtDblClick(prmList As ListBox, prmCourt As String)

With prmList

'if the lastname column is blank then the slot is free

If .Column(3) ="" Then ‘check for empty string Common_ procedure to S.tart
'move values to booking fields on form the _b00k|ng process, using
[Date] = txtDate the information from the Court
[Room/Hall/Court] = prmCourt list box.
[Time] = .Column(0) :
IstMember.Enabled = True This also .enables the
txtLetters.Enabled = True Member list box.

Else

'Code for deleting booking will be added later, in section 8.2.9
End If
End With

End Sub

Private Sub IstMember_DblClick(Cancel As Integer)
'user has selected a member for a booking

Code a double-click event for
[Membership No] = IstMember the member list box, to put
membership no on the form.

End Sub

Private Sub cmdResetMemberList_Click()
'set list back to show all members

txtLetters = Null
IstMember.Requery

End Sub As seen in section 3.6.3.3.

Private Sub txtLetters_AfterUpdate()
'set list to filter for start characters entered in txtLetteri.-""

IstMember.Requery

End Sub

Fig 8.2.13 Code to make Member Bookings for Courts.
See section 3.6 for information regarding list box properties, including the Column property.

The user can now make Court bookings for Members by following the simple procedure shown by Fig
8.2.12. The form is bound to the Bookings table so you can create a wizard save button (give it the
label Confirm Booking and the name cmdConfirm) to save a booking. Make the button disabled for each
new booking, enable it when the user double-clicks on the member list box and disable it (moving the
focus away first, perhaps to the date in the header or to a New Booking button) in the Confirm
Booking button click event; this should ensure that it is only enabled when the full set of data is in the
form fields and that it cannot be clicked twice. See section 8.2.8.1.

The booking number is visible on the form so that the user can give this information to the member for
reference if required. If not, then it could be set invisible.

VBA Starting v5-1.doc Page 125 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.2.8 Preventing double-bookings.

The form opens showing the availability at that instant of time. However, in a multi-user system it

could be quite possible that another user is looking for Court availability for the same day, and opens

the Court Bookings form at the same time. Thus, two users are simultaneously looking at the same

information, and could well make a booking for the same room on the same day and at the same time.

At present there is nothing to stop this happening. The standard Access record and form locking

facilities are not really appropriate here, as...

e ...each booking is for a new record, so record locking won’t stop double-bookings.

e ...locking a form means only one user can make a booking (or even simply check availability) at a
time; this is not good practice, especially in a system where booking activity may be high.

So, you will need to check for this situation yourself, via code, and take appropriate action if the
required booking has been made in the few seconds/minutes since the Court Bookings form was
opened or last refreshed.

It may also be useful to provide the user with a report listing double-bookings (if any) where the
booking date is greater than or equal to today; this will highlight any possible cases where the code
hasn’t worked, or some other situation has occurred that has allowed a double-booking.

8.2.8.1 Using DCount.

In the ecmdConfirm click event (see end of section 8.2.7), add code to count up the number of bookings
for the required court, date and time. If the count is zero, then the slot is still free and you can go
ahead and save the booking. If the count is not zero, then there is a booking already for this slot which
has been made in the past few seconds/minutes (if the code is all working correctly!).

Private Sub cmdConfirm_Click()

‘'wizard code to Save record

'plus changes to check for simultaneous double-bookings shown in bold
On Error GoTo Err_cmdConfirm_Click

Dim strSQL As String
Dim intCount As Integer

strSQL = "[Room/Hall/Court] =" & [Room/Hall/Court] & "™ _ Th WO i . iabl
& " AND [Date] = #' & [Date] & "#"' ese two items are in variables
& "AND [Time] = #" & [Time] & "#" D - so that you can check them in
intCount = DCount("[Booking No]", "Bookings", strSQL) the Debugger.

If intCount =0 Then ‘slot is free Wizard line to
DoCmd.DoMenultem acFormBar, acRecordsMenu, acSaveRecord, , acMenuVer7 0@ " save the record.
cmdNew.SetFocus ‘move focus away so can...
cmdConfirm.Enabled = False '...disable confirm button

myRequeryAll  ‘'requery Court list boxes — own proc in Fig 8.2.10
IstCourtl.Enabled = False stop user from clicking on boxes again and attempting to save..
IstCourt2.Enabled = False ..as this will change the booking in the bound fields
IstCourt3.Enabled = False
IstMember.Enabled = False
myDisplaylnfoMessage "Booking confirmed"
Else ‘slot has just been booked
myDisplayWarningMessage "This slot has just been booked by another member" & vbCrLf _
& "Please choose another slot or cancel”

End If <
_ _ _ See section 8.2.10 for a
Exit_cmdConfirm_Click: possible method of allowing
Exit Sub
the user to make several
Err_cmdConfirm_Click: bookings for the same date.

MsgBox Err.Description
Resume Exit_cmdConfirm_Click

End Sub

Fig 8.2.14 Code (in bold) showing how to use DCount to check for a double-booking
To test a double-booking choose the date, court, time and member, then go to the Booking table and

add a booking for the same date, court and time, close the Bookings table, go back to the Bookings
form and then click on cmdConfirm.

VBA Starting v5-1.doc Page 126 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

8.2.8.2 Setting a unique index.

x|
It is also possible to get Access to do the check | S Igldetx MName — Field Mame — Sart Crder i’
for you. Add a new index called BookingsSiot t Ao RaomHalCourt hecendin
the Bookings table, as shown in Fig 8.2.15. Time Ascending
DateTime Date Ascending
Time Ascending
Set the value for the Unigue property to Yes (the F | Primarykey Booking Mo Ascending
default is NO). RoomfHallf Court Room HallCourt Ascending
|
Index Properties
Primary Mo
Unigue es The name far this index. Each index can use
Ignore Mulls Mo up ko 10 Fields,
Fig 8.2.15 Setting a unique index for the booking slot.
Now, if you use just the wizard code to save a record, Access will check for a double booking.
However, the message that Access comes back with is not that user-friendly; see Fig 8.2.16.
: Xl

The changes vou requested ko the table were not successful because they would create duplicate values in the index, primary ke, or relationship, Change the

data in the field or fields that contain duplicate data, remove the index, or redefine the index to permit duplicate entries and try again.

Fig 8.2.16 Access standard message for a duplicate key error

Fig 8.2.17 Shows how you can add to the wizard code to check for this message and replace it with
one of your own. This is probably the best method to check for simultaneous double-bookings as
Access code is likely to be more accurate than yours or mine!

Private Sub cmdConfirm_Click()

'wizard code to Save record

'plus code to intercept Access error for double-booking
On Error GoTo Err_cmdConfirm_Click

This code is the same
as in Fig 8.2.14.

cmdNew.SetFocus ‘won't get here if save fails .
cmdConfirm.Enabled = False ‘disable confirm button '
myRequeryAll  'requery Court list boxes — own proc in Fig 8.2.10
IstCourtl.Enabled = False ‘'stop user from clicking on boxes again and attempting to save...
IstCourt2.Enabled = False ‘...as this will change the booking in the bound fields
IstCourt3.Enabled = False

IstMember.Enabled = False

myDisplayInfoMessage "Booking confirmed" ; - .
Test first with just this MsgBox

Exit Sub

number is. Then remove it (or
comment it out, as here).

Err_cmdConfirm_Click: 4

Exit_cmdConfirm_Click: | statement, to see what the error

'MsgBox Err  ‘code this first to see the error number then code the rest
If Err = 3022 Then  ‘duplicate key error
myDisplayWarningMessage "This slot has just been booked by another member" & vbCrLf _
& "Please choose another slot or cancel”
Else
MsgBox Err.Description
End If
Resume Exit_cmdConfirm_Click

End Sub

Fig 8.2.17 Code (in bold) showing how to intercept and replace Access duplicate key error message.

See Part 2 of the Further VBA Trainer for more information about error-handling.

VBA Starting v5-1.doc Page 127 Version 5.1 — July 2005



VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

8.2.9 Deleting a Member Booking

This is now easy.

In Fig 8.2.13, in the procedure myCourtDbiClick where there is a comment about deleting a row, replace
the comment with the code shown in Fig 8.2.18.

Else

'this is a booked slot
‘confirm delete - show member details (number and name)
strDelete = "Delete booking for Member No: " & .Column(1) & vbCrLf _
& .Column(4) &" " & .Column(3) & " (" & .Column(5) & ")"
If myYesNoQuestion(strDelete) = vbNo Then
myDisplaylnfoMessage "Booking kept on file"

strSQL = "DELETE * FROM Bookings where [Booking No] =" & .Column(2)

DoCmd.SetWarnings False
DoCmd.RunSQL strSQL
DoCmd.SetWarnings True

‘suppress Access messages

myDisplaylnfoMessage "Booking deleted"

myRequeryAll
End If

‘own procedure that requeries each list box — see Fig 8.2.10.

Fig 8.2.18 Code to Delete a Booking

See section 6.6 for further information about using embedded SQL to delete a row from a table.

Fig 8.2.19 shows the form and the ‘Delete booking?’ question, which uses some of the hidden list box
fields to make a more useful message.

-inix]
Enter Date for B ooking: |1 3/5/1996
> Eocking Mo Eutoturber] Court 1 Availability Eo.urt 2 Lvvailability Court 3 Availability
TimeSlot | Lasthame TimeSlot | Lastname TimeSlot | Lastname
Room/HallCowt [ ] 0300 0300 0300
W embershin M 10:00 10:00 1000 | Jameson
szl [ ] 11.00 1100 | Davies 1100 | Gray
Date I:I 12:00 1200 12.00
1300 1200 1300
Time [ ] 1400 1400 1400
15:00 15:00 15:00
16:00 16:00 16:00
17.00 17.00 17.00
18:00 Cartwiright 18:00 18:00
19.00 15.00 19.00
_fleset member st _| — 2000 2000
enter start [etters of surname to narmaw the list dee fies slots only I
Double-click o raw b select member
embership M| Lasthame [Firstname: [Title  [Post Code  [Date of Bitth -
Ali David Mr CH4EKD 1440741951
3 Barett Mathat  Mis  CHI3DR  25/11/1960 X
2 Cartwright Denize Mrz CH92EY  29411A1960
15 Davies Sandra k4 Mrs CHI 1% 01/02/1965 <P Delete booking For Member Ha: 6
17 Everett Alan Mr CH3 3C) 3040741957 \._‘_'/ Petra Robinson (Miss)
4 Farspthe Ainn M Mizz 05/08/1973
13 Gray Isvar P Mr CH17ER  12/04/1947
7 Harriz David.l hr CH38PS  22/05/1928 es I Moy I
E Jameson Donna Miss CH27FH 04424970
20 Jones Edward R Mr CH2830L  22M12/1958
19 Lacker Alizan Mizz CH3BUH 3041241983
18 Locker Liarn br CH38UH 301271983
3 Permy Jazon B br CH1 8yl 03/06/1982
53 Riobinson Petra Miss ST1020Z  07/07/1984 LI

Record: I<| 4 || 44 |b| |He| of 44

Fig 8.2.19 Deleting a Member Booking

VBA Starting v5-1.doc

Page 128

Version 5.1 — July 2005




VBA Trainer - Getting Started

8.2.10 Finally...

Part 8 — Worked Examples of Booking procedures

There are still a number of things that need to be done to make this procedure work correctly in all
situations, and these are left for you to do (design, code and test), as very similar situations have
been covered already in this Trainer. These are the sort of things that you would have to do in a
Project. Some suggestions are shown in Fig 8.2.20.

Item

Comments

Validate the date in txtDate
(see section 3.3.1).

e Check that the value is not Null, is a valid date, and is equal to or
after today. You could allow the user to view past bookings, but
not make/delete past bookings.

e You could also provide a button for the user to use a calendar
control to select the date, putting the chosen date into txtDate.
See section 5.6.

e It could also be useful to put the day of week in words for txtDate
on the form. See section 4.2.1.

e Check that the Centre is open on this date. One way is to have a
new ClosureDate table and use DCount or DLookup to see if the
given date is in the table.

A Cancel Booking (wizard
Undo) button could be useful if
the user wants to exit without
saving.

See the end of section 2.5 and exercise 2.7.2.

A New Booking button (wizard
New Record) is useful to allow
the user to make several
bookings at a time (no need to
close and reopen the form).

e Make the button enabled/visible only when the current booking
has been saved/deleted/cancelled.

e Use the form current event to set default settings for each new
booking.

e Set the Focus to the date at the top of the form.

Check that the booking time is
possible for bookings for
today.

If the date for the booking or deletion is today’s date, then check to
see if the time on which the user has clicked can be booked/deleted
or not, and take appropriate action if it cannot (message and cancel,
for example).

The following line should do the check:

If CDate(txtDate) = Date And CDate(.Column(0)) < Time Then ‘cannot book...
See also VBA FAQ 16 Why don't the Date and Time functions work
in my module? on http://www.cse.dmu.ac.uk/~mcspence/Access.htm

You could code this check in a public function that you then use to
determine the criterion for the time in the Court availability queries, or
in the myCourtDbiClick procedure.

Ask an ‘Are You Sure?’
question before confirming
and deleting bookings.

e Ask the question in the appropriate button click event.

o Save/Delete if the user replies Yes, and requery the three Court
List boxes so that the change is reflected on the form.

e Otherwise cancel the changes (use Undo, or call the Cancel
Booking button code).

Trap unsaved changes and
give the user a chance to
confirm or cancel a booking.

e See section 2.5.2.
e Remove the X in the top right-hand corner of the form and add a
wizard Close Form button.

Tidy the form up; | have
concentrated so far on
functionality rather than what
the form looks like. Some
things you may like to
consider are listed here.

Add suitable headings (corporate and form). See section 2.2.1.
Show today’s date and time. See section 4.2.1.

Perhaps add help for the user to show how to fill in the form.
Remove record selectors, max/min buttons, navigation bar, etc.
Change sizes of fields so that they are appropriate to the data.
¢ And there will be others | haven’t thought of.

Fig 8.2.20 Suggestions for improvements to the Court Booking facility.

VBA Starting v5-1.doc

Page 129 Version 5.1 — July 2005



http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#Why dont the Date and Time functions work in my module#Why dont the Date and Time functions work in my module�
http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#Why dont the Date and Time functions work in my module#Why dont the Date and Time functions work in my module�
http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started

A possible test plan is shown in Fig 8.2.21.

Part 8 — Worked Examples of Booking procedures

Test No | Data Reason for Test Expected result
1 Selection of Check validations. o Messages as appropriate for errors, and user
invalid and See section 3.3.5 for cannot move on.
valid booking | some ideas. ¢ Valid date accepted, user can move on and Court
dates. list boxes are enabled.
2 Booking Date | Can a booking be made | e All three Courts are fully available for that day.
= date in the for each Court? e Can make bookings for each Court.
future, which | Make several bookings | «  Each new booking is reflected accurately in the
currently has for each Court for that Court list box.
no bookings at | day, for several e Form s refreshed after each booking to ensure
all members. previous data is removed.
Check operation of e Cannot save a record without a Membership No.
function. e Bookings table shows all new bookings correctly
recorded.
e Buttons are enabled/disabled appropriately.
3 Booking Date | Can bookings be deleted | e  All three courts correctly show bookings from test 2.
= as above, from each Court? e Can delete each booking
but now has Delete all the bookings | «  Court list boxes are refreshed accurately.
the bookings | made in test 1. e All deleted bookings are removed from Bookings
from test 2. table.
e Buttons are enabled/disabled appropriately.
4 Booking date | Alternate making and All works correctly.
= as above. deleting bookings. Buttons are enabled/disabled appropriately.
5 Booking date Can the user make
= system date. | bookings after the
current time?
Click on slots that are:
e Before now e Cannot book.
e The same as the e Cannot book — or could code to allow bookings in
current hour. first 5-10 mins.
e After the current e Booking OK.
hour.
6 |- Can user start a booking | ¢ Can use Cancel button to cancel booking.
then cancel it? e Fields on form are cleared.
e No record is written to Bookings table.
7 |- Check confirm booking e Yes — booking saved and list boxes refreshed.
button. ¢ No - booking cancelled/ignored (depending on how
you have handled this)
8 |- Check multi-user e Start a booking.
double-booking e Add booking for same court, date and time directly
situation. into the booking table.
If possible, also testona | «  Complete the booking. Confirm.
common server area e Message ‘already booked’ and possible cancel.
with a colleague on e User can cancel or book for another date/time.
another machine.
9 |- Start a booking and Situation is trapped and user is given option to save or

move to new booking or
close without saving.

cancel.
Both options work correctly in each situation.

Fig 8.2.21 Possible test plan for making and deleting bookings
Items in italics are those you will have to code as extras to the code demonstrated so far.
This is not an exhaustive list.

VBA Starting v5-1.doc

Page 130

Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

8.3 Example 2 — Class Bookings for Rooms/Halls

These bookings could be done in exactly the same way as for Member Court Bookings; however, as
Classes typically run each week on the same day at the same time for a number of weeks, a different
approach has been taken here. This could be a more appropriate method for the user and also allows
different features to be demonstrated.

The approach taken is...

e ...user selects a class from a list.

e ...user enters dates between which the class is to take place. The Class Day and Time are taken
from the Class details.

o ...room/hall availability for the weeks of the dates given is displayed for information, and to allow
deletion of a class.

e ...aseries of class bookings are written to the Booking table, using embedded SQL.

8.3.1 Start the ClassBookings form

The first thing that needs to be done for this form is to add a list box based on the Classes table. A
useful order could be the Class Activity then the Class Day, but the Class Day will be sorted in
alphabetical order not day of week order.

(Bl
| Field Mame | DataT pﬂ
It's easy to sort in day of week order, but %g:m;m Murber (=]
this requires another table, to give a _ . = DayMo DayMame
numeric ID to each day name. Field Properties > 1 Sunday
See Fig 8.3.1. General | Lagkup | —
9 Field Sizel Biyte || < Maonday
The numbers given to each weekday are B Places s || 3| Tuesday
the same as those used by Access for the Input Mask | 4| Wednesday
constants vbMonday etc, as returned by the e i o - 5| Thursday
Weekday function. Validation Rule | b Friday
Walidation Text 7 Saturday
. Required Mo |
(If you had a table with actual dates, and Indexed Yes (o D1 g 0
wanted to list them in weekday order, then S VEES Record: 14| 4 [T 1 |
you could simply use the Weekday function
to get the weekday number for each date).
Fig 8.3.1 The WeekdayNo table
Now you Can create =l EIasLihm-: : Select Que ------ il - |EI|5|
a query to join the -
Classes and the we :I

WeekdayNo tables,
to list the details in
an appropriate order,
as shown in Fig
8.3.2.

" |DavMName

You will need to

create the join Field: | Class Mo Class fctivit Diarehon Class Da Class Tine Male/FemalaiMixed | Class Tukar =

between the two Table: |Classes Classes_ Weekd§ Mo Classes Classes. Classes. Classes —
. .. Sort: Ascending Ascending Ascending Ascending

tables; you do this in Show:

the query design e .

view. ag | _.|_|

Fig 8.3.2 The Classes list box query, to order by day of week.

VBA Starting v5-1.doc Page 131 Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

Now create an unbound form, and add a list box IstClass to it based on the ClassListBox query from Fig
8.3.2. set the width for the Day No field in IstClass to zero, to hide the field on the form.

It would be useful to provide filters for IstClass to select elements within the Class Activity and for
Male/Female/Mixed, so add the following:

e To your form (see Fig 8.3.3)
o0 A textbox called txtActivity
o0 A combo box called cboMFM with LimitToList = Yes. Set the Defaultvalue property to “All”.
o A non-wizard command button cmdReset to reset the list box.
o These filters will work in exactly the same way as you have seen already in sections 3.6 and
8.2. You should know to create and code for them by now.

o Two criteria to your ClassListBox query:
o For the ClassActivity column:
Like "*" & [forms]![ClassBookings]![txtActivity] & "*"
This will select all Class Activities where the text in txtActivity occurs anywhere in the field.
o For the Male/Female/Mixed column:
Like IIf([forms]![ClassBookings]![cboMFM]="AIl","*",[forms]![ClassBookings]![cboMFM])
This will create a criterion of ‘Like “*” * if the combo box contains “All”, and ‘Like “Male” ‘ if the
combo box contains (for example) “Male”. See also section 8.2.5.

Your form should now look like that shown in Fig 8.3.3.

&5 ClassBookings : Form élﬂ,ﬁ'/ cmdReset
btActivit Reset Class list ! |
Cuvi
Y — y select activity Select allfMale/FemaleMixed
Double-click on row ta select Class
Class No [ Class Ackivie [Class Day  [Class Time
3 Body Conditioning | Monday 15:00
. a Body Conditioning | Wednesday | 14:00
Note Orderlng ;f(v Body Conditioning | Thursday 1200
of Class Day > Body Conditioning | Friday 10:00 Female Latham
for each / 7 Family Mulki-gym  Tuesday 1200 Mixed Jackson
A 1 Ladies' Aerobics | Monday 100 Female Evans
aCt|V|ty (see 8 Ladies' Aerobics | Wednesday | 10:00 Female Evans
Fig 8.3 2) & Ladies' Multi-gym  Tuesday 14:00 Female Adams
g o.5.2). 5 Men's Multi-gym  Tuesday 10:00 Male Jackson
18 Men's Multi-gym | Friday 14:00 Male Jackson
14 rAulki-gym Thursday 15:00 Mixed Adams
4 Skep Aerobics Monday 1900 Mixed Wheildon—lll
L] | | »

Fig 8.3.3 The ClassBookings form with the class list box.

8.3.2 Selecting a class

Add a couple of textboxes (ixtStartDate and txtEndDate) for the user to use for the dates between which
the class is to be booked. These will be disabled initially but enabled (and with txtStartDate given the
Focus) when the user double-clicks on the class list box to choose a class.

Add a See Room/Hall Availability button cmdSee, being @ non-wizard button with no code as yet.

Add also some text boxes to record the details of the selected class. Make the Room/Hall/Court field a
Value List combo box with the room names, with LimitToList = Yes. This form is not bound to any table or

query; these fields will be used later in embedded SQL.

See Fig 8.3.4 for the form so far. Note that the Visible property for some of the fields is set to No, as the
fields are not required for the user to see.

See Fig 8.3.5 for the code to add for a double-click event for the Class list box IstClass. You should
now be able to select the required class and see the details in the unbound text boxes.

VBA Starting v5-1.doc Page 132 Version 5.1 — July 2005



VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

B3 ClassBookings : Form
Reset Class list |

Select AllfralefFemale/Mixed

select ackivity

=10l x|

10:00

Female

Double-click on row ko seleck Class I I'q" ;I
Class Mo [Class Activi [Class Day  [Class Time  [MalejFemalefMixed| Class Tutor
3 Body Conditioning | Monday 15:00 Mixed Latham
9 Baody Conditioning | Wednesday | 14:00 Mixed Latharm
15 Body Conditioning | Thursdary 19:00 Mixed Latham

Latham

Start Date

End date /

See RoomfHall
availabilicy -

txtStartDate
and
txtEndDate

cmdSee

ay Mixed Jackson
1 Ladies' Aerobics  Monday 10:00 Female Evans
g Ladies' Aerobics | Wednesday | 10:00 Female Ewvans
[} Ladies' Multi-gym | Tuesday 1400 Female Adamns Fioom/Hall/Court I:
5 Men's Multi-gym | Tuesday 10:00 Male Jackson Unbound teXt
18 Men's Mulki-gym | Friday 14:00 Male Jackson Class Mo boxes for
14 Mulki-gym Thursday 15:00 Mixed Adams Class D Tussd . )
4 Step Aerchics Monday 19:00 Mixed Wheildan & =L b00k|ng details
gm0 P e T e Class Time 15:00]
B3 ClassBookings : Form 1ol =l
|l"-|'1'I'2'I'3'I'4'I'5'I'B'I'?'I'S'I'S'I']U'I'11'I'12'I'13'I'14'I'15'I'1S'I'1?I13'|;
:I + Detail
T T T
Z Reset Class list
1 FSEfErtartivity]T I iJI:iI:‘I.L it ..1': iFEmgte et i
T [Double-click dn row th select [Class | |Unb0L:nd | | |Unb||:|und I;I |
2 |IMunbound
Z See Room|Hall
- availability:
=
+|H
N A |Booking Mo ||Lnb0und |
d i [FroomdH=l/Couft |[Qnboun -
N [Flass N |[dnbound
z [Flass Day |[dnbourd ]
7 M EtessFifme b
N | | | | | | | | | | | | tembel/ Class ||L nbour| |Unb0 J|
E} T T T T T T T T T T T T

IstClass — based on ClassListBox query, but
does not show all the fields (column width set
to zero for hidden columns).

txtDayNo — used to store the day
number from the ClassListBox
query, for use in section 8.3.6.

Fig 8.3.4 The form so far, with the Class list box, date fields and fields for values.

With IstClass
[Class No] = .Column(0)
[Class Day] = .Column(3)
[Class Time] = .Column(4)
txtDayNo = .Column(2)
End With

txtStartDate.Enabled = True
txtStartDate.SetFocus

txtEndDate.Enabled = True
cmdSee.Enabled = True «¢

‘enable date fields ready for user entry

Private Sub IstClass_DbIClick(Cancel As Integer)
'put chosen class values in fields on the form.

Note that these column numbers refer to the
corresponding value in the list box. You may need to
adjust these to match how you have created your list box.

End Sub

Button enabling is here for now. But code later will fail if
user does not enter any dates — see section 8.3.6.

Fig 8.3.5 Code when user double-clicks on the Class list box

VBA Starting v5-1.doc

Page 133 Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.3.3 Creating a BookingDate table.

We know that the class runs on a specified date at a specified time. What the user wants to see now
is the availability for the weeks for which they want the class to run. For example, if the class runs on
a Wednesday and the user enters the dates 25" May 2005 and 29" June 2005 (both dates are
Wednesdays) then they want to see if the class is booked for all Wednesdays in that range at the
required time.

An outer join with a BookingDate table can be used to do this, in an exactly similar manner to that

used in the previous section for the BookingTime table. But it was easy to create the BookingTime
table as the times for each day’s bookings were known. The contents of the BookingDate table will
vary from booking to booking.

Do the following: | —— alﬂllﬂ
e Create a BookingDate table as shown in Fig 8.3.6. [ classpate DateTine =
e Create an Access module with the code shown in Fig Field Properties

8.3.7. This code will take two given dates and create General | Logkup |

rows in the BookingDate table for each week between sk

the two dates. Caption
e Create a Click event for the cmdSee button and add the i

following line: oy —

myCreateDateTable CDate(txtStartDate), CDate(txtEndDate) Indexed Yes (Mo Duplicates)

Now you can double-click on the Class list box to select a o ede Db contro

class, enter start and end dates, click on the cmdSee button
and see the required dates in the BookingDate table. These
dates will vary for each pair of start/end dates.

Fig 8.3.6 The BookingDate table.

Option Compare Database
Option Explicit

Public Sub myCreateDateTable(prmStartDate As Date, prmEndDate As Date)
‘add rows to the BookingDate table to correspond with the dates the user requires

Dim dtDate As Date
Dim strSQL As String

'first delete any previous rows from the table
DoCmd.SetWarnings False 'suppress Access messages
strSQL = "DELETE * FROM BookingDate"

DoCmd.RunSQL strSQL

'starting from the start date, add a row for each week
dtDate = prmStartDate
Do Until dtDate > prmEndDate  'stop after the end date
strSQL = "INSERT INTO BookingDate VALUES(#" & myUSADate(dtDate) & "#)"
DoCmd.RunSQL strSQL
dtDate = dtDate + 7  'add 7 days

Loop
DoCmd.SetWarnings True  'reinstate Access messages 4 )
See VBA FAQ 15 Why does a calculated date give
End Sub the wrong result in an SQL statement? on

http://www.cse.dmu.ac.uk/~mcspence/Access.htm

'Convert date from dd/mm/yyyy (UK) format to mm/dd/yyyy (USA) format
'dates in SQL must be in USA format

Dim strDate As String

strDate = Month(prmUKDate) & "/" & Day(prmUKDate) & "/" & Year(prmUKDate)
myUSADate = CDate(strDate)

End Function

Fig 8.3.7 Code to add dates to the BookingDate table

VBA Starting v5-1.doc Page 134 Version 5.1 — July 2005


http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#Why does a calculated date give the wrong result in an SQL statement#Why does a calculated date give the wrong result in an SQL statement�
http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#Why does a calculated date give the wrong result in an SQL statement#Why does a calculated date give the wrong result in an SQL statement�
http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

8.3.4 Seeing Class availability

Now that we have the BookingDate table, with the dates required for the bookings, we can create
queries similar to those in section 8.2.3 to see the class availability for those dates at that time.

The two queries for the Fitness Suite are shown below. Queries for the two Sports Halls can be
created in exactly the same way.

g8 FSuite Bookings : Select Query ;Iglil

-

IMale/FernaleiMixed

L |

Field:
Table:
Sork:
Shiow:
Criteria;
or:

Class Mo
Bookings

Class Ackivity
Classes

Booking No
Bookings

RoomfHallfCourt
Bookings

Date
Bookings

Time
Bookings

"Fitness Suite" Between [Forms][Class| [Forms]![ClassBookings]![class time]

‘ IT oL

Between [forms]![ClassBookings]![txtStartDate] And [forms]![ClassBookings]![txtEndDate]

<] Outer join query, showing all

g=t Fsuite Availability : Select Query ) .
rows in BookingDate table.

Biooking Mo
RoomHallf Court
Class No
Dake

Class Ackivity

-
4] b
Field: | ClassDate Biooking Mo FuoomyHall/Courk Class Mo Class Activit =
Table: |BookingDate FSuite Bookings FSuite Bookings FSuite Bookings FSuite Bookings
Sark:
Show:
Criketia:
art

-
4 + -

Fig 8.3.8 Queries to show class availability for the chosen dates and time.

You should now be able create list boxes (IstFSuite, IstSHall1, IstSHall2) for each of the rooms, just as in
section 8.2.4. Use the queries shown in Fig 8.3.8, and select all the columns, but only show the
columns for the Date and the Class No. Set the list boxes to invisible initially, as they will pick up
previous values in the BookingDate table when the form is loaded.

Add the code shown in Fig 8.3.9 to the click event for cmdSee.

Private Sub cmdSee_Click()
'Create the date list in the BookingDate table

myCreateDateTable CDate(txtStartDate), CDate(txtEndDate)

IstFSuite.Requery  'requery each room availability e

Public procedure from Fig 8.3.7.

IstSHall1.Requery

IstSHall2.Requery

IstFSuite.Visible = True
IstSHall1.Visible = True
IstSHall2.Visible = True
[Room/Hall/Court].Locked = False
[Room/Hall/Court].SetFocus
[Room/Hall/Court].Dropdown

'make the list boxes visible

'user to select room from the list

)
<«

See section 3.6.

End Sub

Fig 8.3.9 Code to create dates and show room availability.
VBA Starting v5-1.doc Page 135 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

Now, if the user selects a class, enters two dates then clicks on cmdSee, the form should look like that
in Fig 8.3.10. The user now has to select the room from the drop down list.

B3 ClassBookings : Form =10 x|
Resek Class list |
select activity Select AlfMalejFemale/Mixed SlEEirEiE v ahfiz
= 9751996 30/5/1996

Double-click on row to seleck Class IA" K I I
Class Mo [Class Activit: Class Dar Class Tirme MalejFemale/Mixed| Class Tutor a
3 Body Conditioning | Monday 15:00 Mixced Latham See R_'iok';ﬂll!lHa"
9 Body Conditioning | Wednesday | 14:00 Mixed Latham availabilicy

5 Body Conditioning | Thursday 19:00 Latham
16 Body Conditioning | Friday 10:00 Female Latham
7 Family Multi-gym | Tuesday 12:00 Mixed Jackson
1 Ladies' Aerobics | Monday 10:00 Female Evans
g Ladies' Aerobics | Wednesday | 10:00 Female Evans
[ Ladies' Mulki-gym | Tuesday 14:00 Female Adams Foom/Hall/Court | -
5 Men's Mulki-gym | Tuesday 10:00 Male Jackson Fitness Sute
15 Men's Mulki-gym | Friday 14:00 Male Jackson Class Mo Sports Hall 1
14 Muli-gym Thursday 15:00 Mixed Adams Class Day Sparts Hall 2
4 Step Aerohics Monday 19:00 Mixed wheildon |« e
(I T Tt o P fle Class Time 19:00)

Fitness Suite Avallability  Sporks Hall 1 Awailability  Sparts Hall 2 Availability

ClassDate | Class No ClassDate | Class No ClassDate  [Class No
19/05/1996 19/05/199 09(05/1996
16/05/1996 16/05/1996 16/05/1996 |15
2305/1996 23/05/1996 23105/1996
30/05/1996 30/05/1996 30/05/1996

Fig 8.3.10 The ClassBooking form so far, showing room availability for the selected class at the dates
and time required.

8.3.5 Making the Bookings and checking for double-bookings.

Add a non-wizard command button with the caption Confirm Bookings and the name cmdConfirm. Set it
to disabled initially, and enable it when the user chooses a room (use the AfterUpdate event for the
Room/Hall/Court text box). Create a click event for the button and add the code shown in Fig 8.3.11.

Points to note:

Even though the unique index BookingSlot (see Fig 8.2.15) has been created, it does not appear

to cause a trappable error (i.e. where you can code an On Error statement) when inserting records

using embedded SQL in this way.

0 You must therefore code your own check for a double-booking and report the fact to the user.

o However, if you do attempt to write a record that causes a duplicate key then the SQL
statement is simply ignored.

The myUSADate function is used again (see Fig 8.3.7) for the calculated date.

The bookings are written out in a loop, using the same loop controls as when creating the dates

for the BookingDate table.

0 A better (safer) method may well be to use Data Access Objects (DAO) code to read the
BookingDate table into a Recordset and use the same dates as on there. Recordsets are
discussed in the Further VBA Trainer.

The room list boxes are requeried after each set of bookings to show the new state of affairs.

VBA Starting v5-1.doc Page 136 Version 5.1 — July 2005



VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

Private Sub cmdConfirm_Click()

Dim dtDate As Date
Dim strSQL As String
Dim intCount As Integer

dtDate = txtStartDate
DoCmd.SetWarnings False

If intCount = 0 Then

& "Nos
& [Class No] & ","

DoCmd.RunSQL strSQL
Else ‘already booked

End If
dtDate = dtDate + 7
Loop

DoCmd.SetWarnings True
IstFSuite.Requery
IstSHall1.Requery
IstSHall2.Requery
cmdConfirm.Enabled = False

End Sub

'make the bookings - non-wizard code

Do Until dtDate > CDate(txtEndDate)
'insert each booking into the Booking table
'must check first for double-booking
strSQL = "[Room/Hall/Court] =" & [Room/Hall/Court] & ""
& " AND [Date] = #" & myUSADate([dtDate]) & "#" _
& "AND [Time] = #" & [Class Time] & "#"
intCount = DCount("[Booking No]", "Bookings", strSQL)

'start with the first date

'OK - can book

strSQL = "INSERT INTO Bookings ([Room/Hall/Court], " _
& "[Member/Class], " _
& "[Class NoJ, [Date], [Time]) " _
& "VALUES (" & [Room/Hall/Court] & "," _

&"#"' & myUSADat_e(dtDate) &"#"
& "#" & [Class Time] & "#)"

myDisplayWarningMessage "This slot has been booked by another class - cannot book™" & vbCrLf _
& [Room/Hall/Court] & " on " & dtDate & " at " & [Class Time]
‘date for next week

'requery each room availability

‘to stop user attempting to make the booking again

Fig 8.3.11 Code to make Class Bookings.

8.3.6 Finally...

Just as for the Member Bookings in Fig 8.2.20, there are a number of things that could be done to
improve the ClassBooking form. See Fig 8.3.12. Note that this form is not bound to a table or query,
so you cannot use wizards for buttons, but must work out your own code.

Item

Comments

Validate the dates in txtStartDate
and txtEndDate (See sections
3.3.1and 3.3.3.2).

Similar to CourtBooking form.

Enable cmdSee only if valid; see Fig 8.3.5.

You could also use txtDayNo to validate that the dates are for the
correct day of week (use Weekday function).

Add a Cancel Booking button.

Clear the data fields, reset other properties as appropriate.

Add a New Booking button.

Clear the data fields, reset other properties as appropriate.

Add a Delete Booking button

Delete single bookings as on CourtBooking form.
You could also delete all bookings for this class within the two
dates.

Ask an ‘Are You Sure?’
question before confirming and
deleting bookings.

Similar to CourtBooking form.

Trap unsaved changes and give
the user a chance to confirm or
cancel a booking.

You will need to check to see if the user has clicked on any
controls or entered data to start a booking; a suggestion is that
you check for non-null values in the data fields on the form.

Tidy the form up and improve
functionality.

Similar to CourtBooking form.

You may also need to enable/disable controls appropriately.
Add a ‘see all’' / ‘see free’ facility as on Court Booking form.
Don’'t make booking if Centre is closed that day (see Fig 8.2.20)

Fig 8.3.12 Suggestions for improvements to the Class Booking facility. Work out your own test plan.

VBA Starting v5-1.doc

Page 137 Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4 Example 3 — Making bookings using a ‘diary page’ grid.

Manual systems often use a diary, with pages that have a column for each room (or doctor, advisor,
etc) across the top and times for bookings (or appointments etc) down one (perhaps the left-hand)
side. The booking details (perhaps name/number of person booking) are entered in the booking cell
where the required column and row intersect. A form that uses the same structure could therefore be
very useful for making bookings for a given day. This means that all bookings must be for a single day
only; it is not possible to make Class bookings for a range of days (as in section 8.3) with this method.

A Crosstab query seems the obvious choice here to use for the form, as this will provide the data
summarised in the way required. This can be problematic, as a room that has no bookings will not
give a column in the result, so opening a form based on the query will then fail if the form is expecting
that column. The example here shows a method of trapping this error and taking appropriate action.

It is also possible to create a diary page grid using Data Access Objects (DAO) code and arrays. This

method is demonstrated in the Further VBA Trainer, and shows the Booking No in each booking cell.

8.4.1 Creating a Crosstab query.

Crosstab queries have the format of rows and columns that correspond to a diary page grid
mentioned above. However, they do not allow the user to enter, for example, the Booking No in the
required cell, as they are designed to provide aggregate totals (counts, averages, maxima, etc), so
the value in each cell is such a numeric total.

See http://www.cse.dmu.ac.uk/~mcspence/Access.htm Access FAQ 17 What is a CROSSTAB query?

First create a query to select from the Bookings table as shown in Fig 8.4.1. Later on (section 8.4.3)
this query will be changed to add a criterion to select just those bookings for the required date. The
Bookings table data as used in McBride has a booking for each room, which is important here as we
want all rooms to have data for the Crosstab query, at least to start with to be able to create the form.

= Bookings - for date : Select Query =101 x|
| = E
[«
Booking Mo
ReoomHallfCaurt
MemberiClass
Membership Mo
Class Mo
Date
Time -
4] | LIJ
Field: |Booking Mo RoomfHalfCourt |Date Tirme =
Table: |Bookings Bookings Bookings Bookings I
Sark:
Show:
Criteria:
ar: il
| | 3

Fig 8.4.1 Selecting columns from the Booking table.

But this query will only select rows for which there is a booking. Create an Outer Join query as shown
in Fig 8.4.2 so that there is now at least one row for every possible booking time. Note that the query
makes (re)use of the BookingTime table from section 8.2.1.

VBA Starting v5-1.doc Page 138 Version 5.1 — July 2005


http://www.cse.dmu.ac.uk/~mcspence/Access.htm�
http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#What is a CROSSTAB query#What is a CROSSTAB query�

VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

gzt Bookings - for date outer : Select QuUery

=101 ]

Date

TimeSlot Booking Mo | Room/HalliCourt |
4

16 Sports Hall 2
5 Fitness Suite
B Fitness Suite
1/Fithess Suite

12| Sports Hall 2

21 Court 3
2 Fitness Suite

17 Sports Hall 2

20 Court 2
18 Fithess Suite

09:00
| 10:00
| 10:00
| 10:00
| 10:00
| 11:00
11:00
5 Bookings - for date outer : SelectQuery (Il 11:00
. - 11:00
| 12:00
’; ok 13:00
meSiot ooking Mo ] .
Room/HalliCourt — 14:00
| 14:00
Record: I1| 1'"-- 1k |b|. -|H_E| of 28” o
| o
Field: | TimeSlat Booking No RoomfHall/ Court Dake =
Table: [BookingTime: Bookings - for date Bookings - for date Bookings - for date —
Sark:
Show:

Criteria:
ot

o

Fig 8.4.2 Showing outer join query of bookings
(Data is as original Bookings table in McBride)

Now create a Crosstab query based on the second query:
e Start a new query — choose the Crosstab Query Wizard.

bookings for each slot.
¢ Give the query the name of Bookings_Crosstab.

Select the ‘Bookings - for date outer’ query.
Select TimeSlot for the row heading

Select Room/Hall/Court for the column heading
Choose to count the Booking No for the calculated column. This will count up the number of

17/5/1996
14/5/1996
15/5/1996
13/5/1996
16/5/1996
14/5/1996
13/5/1996
1751996

16/5/1996
17/5/1996

You should now have a query that gives a result like that shown in Fig 8.4.3. The query counts up all
the bookings for each room and shows the count in the cell for the room and time. Some counts are

greater than 1 as we have not yet restricted the data to just one day.

The rather odd column headed <> is for those rows where there was no value in Room/Hall/Court.

p=t Bookings_Crosstab : Crosstab Query

TimeSlot

Total Of Booking Mo <

Court 1

Court 2

Court 3

=10| |

Fitness Suite | Sporis Hall 1 | Sparts Hall 2

4 03:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00

M= 00 wmo 0 & &0

]

1
2

Record: 14| 4 ||

1

kK| F| af 12

VBA Starting v5-1.doc

Fig 8.4.3 the result of the Bookings_Crosstab query

Page 139

Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.2 Create the diary page form.

Using the form wizard, create a tabular form based on the Bookings_Crosstab query. Choose all the
fields except for the ‘“Total of Booking No’ and ‘<>’ fields, as these are not required.

Set a format of short Time for the time, as this looks better than a format that shows seconds as well as
hours and minutes.

Your form should now look like Fig 8.4.4.

=i

TimeSlat Court 1 Court 2 Court 3 Fitness Suite Sports Hall 1 Sports Hall 2 =
05:00 | |
10:00 | 3 |
11:.00 | 1 |
1200 | |
1300 | |
14:00 | 2 |

|
|
|
|
|
|
15.00 | | 1]
|
|
]
ll
|

>

1

'IE:EIUl |
‘I?:EIDl |
'IE:DDl |
'IS:DDl 1 | 1
2EI:EID| |

Record: |€| 1 || 1 |>||>*| of 12
Fig 8.4.4 The Bookings Crosstab form, showing all bookings from the Bookings table.

8.4.3 Specify a booking date via a parameter

The user will want to see just the details for a given date, and will normally specify that date via a
parameter on a form. So create a simple unbound form (BookingDate) with a textbox (txtDate) for the
date and a wizard button to open the Bookings S
Crosstab form. =

B3 BookingDate : Form

Please enter date
] for booking

See Fig 8.4.5.

i forthis date

Record: I<|<|| 1 >|>I|>*| of 1
Fig 8.4.5 Simple form to specify booking date and open Bookings_Crosstab form

Go back to the Bookings - for date query of Fig 8.4.1 and add the following Forms Collection
reference to the criterion cell for the date:
[forms]![BookingDate]![txtDate]

Enter a date of 13/5/1996 (as this date matches the McBride data) and run the Bookings for date
query. You will see just the bookings for this date.

VBA Starting v5-1.doc Page 140 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

Now try opening the Bookings_Crosstab query or the Bookings_Crosstab form from the BookingDate
form. You will get the error message shown in Fig 8.4.6 in both cases.

Microsoft Access x|

The Microsaft Jet database engine does not recognize 'forms!|BookingDate!lbxkDate' a5 a valid Figld name ar expression,

Fig 8.4.6 Error message when referencing a variable parameter value in a Crosstab query

Crosstab queries cannot cope with the usual methods of referencing variable parameters at run time.
The parameter reference does not have to be in the Crosstab query itself, it could be in an underlying
query (as itis here). Note that it is OK to specify literal values as criteria; for example, if the date was
specified as #13/5/1996# in the query then all would be well, but in this case the query would not be
much use.

However, a solution is not too difficult. See VBA FAQ 14 How can | add a criterion to a Crosstab
qguery? on http://www.cse.dmu.ac.uk/~mcspence/Access.htm

Amend the wizard code for the command button on the BookingDate form, by adding the lines in bold
in Fig 8.4.7. This code reuses the myCreateDateTable procedure from section 8.3.3. Here the start and
end dates are the same, so the table will only have one row in it, with the date on the BookingDate
form.

Change your query (see fig 8.4.7) so that the criterion now is:

In (SELECT ClassDate FROM BookingDate)
The query will now look at the row(s) in the BookingDate table and select only those dates that match
these row(s). In this example there should only be one row, with the date from the BookingDate form.
This is an example of using a sub query; you may find it useful to look at the SQL.

Private Sub cmdOpenDiaryPage_Click()

‘wizard code to open form

‘amended to create date table row for the form query
On Error GoTo Err_cmdOpenDiaryPage_Click

Dim stDocName As String
Dim stLinkCriteria As String

‘first put date in a temporary table for query to pick up
myCreateDateTable CDate(txtDate), CDate(txtDate) 'see separate module

stDocName = "Bookings Crosstab"
DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_cmdOpenDiaryPage_Click:

Exit Sub _lolx|
Err_cmdOpenDiaryPage_Cli EE :|
MsgBox Err.Description *
Resume Exit_cmdOpenDiz Booking No

Room/HallfCourt
MemberClass
Membership No
Class Mo

End Sub

Date

Time -
4] | _>I_I

Field: |Booking Mo Room/Hall/Court  |Date Tirne =
Table: |Bookings Bookings Bookings Bookings
Sart:
Showe:
Criteria: In {SELECT ClassDate FROM BookingDate)
ar: il
y _>l_I

Fig 8.4.7 code to set up the date parameter, and the amended query which now references the row in
the BookingDate table

VBA Starting v5-1.doc Page 141 Version 5.1 — July 2005


http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#How can I add a criterion to a Crosstab query#How can I add a criterion to a Crosstab query�
http://www.cse.dmu.ac.uk/~mcspence/Access and VBA FAQ.htm#How can I add a criterion to a Crosstab query#How can I add a criterion to a Crosstab query�
http://www.cse.dmu.ac.uk/~mcspence/Access.htm�

VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.4 Trapping the form error where Crosstab columns are missing.
If you put the date of 13/5/1996 in the BookingDate form and open the form you may get an error

similar to that in Fig 8.4.8, and one or more columns on the form may have #Name? in all cells for that
column. There is sometimes an alternative message that references a specific field name.

Microsoft Access x|

The expression you entered has a field, contral, or property name that Microsoft Access can't find,

(8]:4

Fig 8.4.8 error message if a field is missing from the Crosstab query.

But if you run the Bookings_Crosstab query it will pick up the data for the required date without a
problem. But the result of the query shows that not all of the rooms have columns as this date does
not have bookings for all rooms. This causes the error when the form is loaded (as shown in Fig 8.4.8)
as the form is expecting columns for all the rooms.

The error number is 2424 (find these numbers out by a MsgBox Err statement in your code, as shown in
Fig 8.2.17) so it is now straightforward (if tedious) to add code to the Form_Load event to trap this error
and adjust the cell contents. Add the code shown in Fig 8.4.9 to your Bookings_Crosstab form.

Private Sub Form_Load()
'trap error where columns are missing and change field properties
On Error GoTo Err_Form_Load

If [Court 1] = "#Name?" Then ‘if the field is missing then will get error 2424
‘it doesn’t matter what is checked for here — the code will simply fail if the field is not on the form
[Court 1].ControlSource ="  ‘must unbind as the field does not exist
[Court 1] = Null ‘set to Null to remove #Name?’ and show as unbooked
End If

If [Court 2] = "#Name?" Then

Court 2].ControlSource = " :
ot < i >oUree See also Fig 8.4.17. The check

End If (and adjustments) for missing
 [Court 3] = "#Name?" Th fields are made again if all
ou = amey en ;
[Court 3] ControlSource = ™ bookings for a room have been

[Court 3] = Null deleted.
End If

If [Fitness Suite] = "#Name?" Then
[Fitness Suite].ControlSource = ""
[Fitness Suite] = Null

End If

If [Sports Hall 1] = "#Name?" Then
[Sports Hall 1].ControlSource = ™"
[Sports Hall 1] = Null

End If

If [Sports Hall 2] = "#Name?" Then
[Sports Hall 2].ControlSource ="

[Sports Hall 2] = Null Part 2 of the Further
Edlt ¢ VBA Trainer has more
ExitSub e e information about

,,,,,,,,,,,,, error-trapping.
Err_Form_Load: e
If Err = 2424 Then 'error number for the error where columns are missing
Resume Next 'resume at statement *after* the error, to change field properties
Else
MsgBox Err.Description
End If

End Sub

Fig 8.4.9 Trapping missing fields and correcting cell contents

VBA Starting v5-1.doc Page 142 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.5 Using Conditional Formatting for booked/free slots.

Your form should now look like the form in Fig 8.4.4, but each slot should only have a 1 (booked slot)
or be Null (free slot). Any other value (such as 2) would indicate a problem, possibly a double-
booking.

But the form would look much better if each slot was formatted much more clearly to show which was
free and which was booked. | cannot find out how to do this via VBA, and one textbook | have read
stated that it is not possible. However, a new feature in Access 2000 was that of Conditional
Formatting, and with this feature the required formatting is simple. Click on the fields that you want to
format, then go via Format 2>Conditional Formatting on the main menu and then set the required
formatting as shown in Fig 8.4.10. Choose the back fill and font colours that you want to use. Here |
have set them both to the same colour, so that the cell contents do not show up; light grey is used for
a booked slot and white for a free slot. (Note that the different choices only show up in the ‘preview’
box; the choice boxes on the right of the conditional formatting dialog box seem to be the same all the
way down).

-lgix]
N R R D
# Form Header By
z |‘D :PTeslotu Ecturt‘l” ! Eour! 2| !Eourt 3“F|tnesf Sulte”!Sports Hlia\I‘IHS!ports H+II2 h0|d|ng
LAl
- |[[TimeSlat W ] :Tﬁm_z :fﬁm_a ﬁes.s‘ SuiteASparts Ham:féﬁs_ Hal 22 dO\_Nn the
‘Forn; Fooker I I I I ' ' ' ' Sh|ft key,
- you can
2| x| select all
r~Defaulk Formatting the room
oo e | haBbCevyzz | B 2 ufasfa-(= fields at
Font and —Condition 1 once.
BaCkCOlOr IFieId Walue Is j quual ko j |1
= Preview of Format ¢ i =
both = grey. | Exgzfme oo |5 zulo-a--
—Condition 2
Fodvoe: REEE =] fua
Preview of Format ¢ hi =
Fontand | H [ 2 ufa-fa-[-
BackColor
both = white. Add == | Delete. .. | oK I Cancel |
-loix) .
Code in Form_Load
Bookings for: Monday 13 May 1996 < event to get the date
from the BookingDate
TimeSlat Court 1 Court 2 Court 3 Fitness Suite Sports Hall 1 Sports Hall 2 form (USES Forms
Formatting 0300 | | | | [ [ Collection reference)
changed and »110:00 | | | | | I and put details in the
fields locked. | | | [ | | header.
Uses Uses Weekday and
BackStyle, VL | | | | | | WeekdayName functions
SpecialEffect, 1300 [ [ | [ [ for the weekday name
BorderStyle and 1400 | | | | | | (xtDayName), and
Locked field — FormatDateTime to
properties. : I I I ! | | display the date
B | | | | | (txtDate).
f7o0 [ [ | | | See section 4.2.1.
B0 | | | | | |
o | | | | | |
| | | | | |

Fig 8.4.10 Showing the setting, and the result, of the Conditional Formatting for the Bookings
Crosstab form. Grey slots are booked, white slots are free.
Some other formatting and changes have also been made to the form.

VBA Starting v5-1.doc Page 143 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.6 Making Bookings.

Now we can get down to using the form. So far, not much VBA has been needed, but that will now
change.

8.4.6.1 Making a start.

Add the code shown in Fig 8.4.11 to the Click event for the Private Sub Court_1_Click()

[Court 1] field, and try clicking on a white (free) and grey

(booked) slot. You should see the appropriate message If IsNull([Court 1]) Then s the slot Null?
displayed. This coding (suitably adjusted — but don’t do it yet) £josgBox "This slotis free

will work for the other fields, even for those where there is not a MsgBox "This slot is already booked"
column in the underlying Crosstab query. As we are able to test End If

for, and find, booked and free slots, we can make bookings for End Sub

the free slots.

Fig 8.4.11 Testing for booked and free slots.

When the user clicks on a slot, a code reference to the value in the TimeSlot field will be for the value
for the relevant row. We will know from the slot itself which room is wanted and thus whether or not
the booking is for a Member or a Class (Courts are for Member bookings, other rooms are for Class
Bookings).
There are several rooms in this booking grid, so a useful concept to apply here is that of ‘hidden fields’
on the form (see section 4.3.8), where data is put in the field(s) in one procedure for other procedures
to pick up. Create three new text boxes (delete the labels) in the footer for the Bookings Crosstab
form:
e  txtRoomHallCourt — to be used to store the room name.
e txtMemberClass — t0 be used to store True for Member bookings and False for Class bookings.

0 The Member/Class field on the Bookings table is a Yes/No field, where Yes means Member and No

means Class.

e txtTime — the time for the booking.
There is no need for a field for the booking date as this is in the form header (see Fig 8.4.10, txtDate).
The fields should be set as Visible = No eventually, but if you leave them visible for now you will see
how they work.

Private Sub Court_1_Click()

'put values in hidden fields on form. T . .
myHiddenFields myconCourt1, myconMember Uses constants set up in Fig 8.1.1.

‘check if slot free or bookechand take appropriate action.

myCheckSlot [Court 1] & i

Passes the textbox itself as a
End Sub parameter.

Private Sub myCheckSlot(prmSlot As TextBox)
'see if slot is free or booked.

If IsNull(prmSlot) Then 'is the slot Null? Checks to see if the given
MsgBox "This slot is free" slot is free or booked.
Else
MsgBox "This slot is already booked"
End If

End Sub

Private Sub myHiddenFields(prmRoomHallCourt As String, prmMemberClass As Boolean)
‘called when user clicks on a slot
‘copies the information to hidden fields on the form, to be used by booking and deletion processes.

txtRoomHallCourt = prmRoomHallCourt Puts slot information in hidden fields

txtMemberClass = prmMemberClass for other processes to pick up.
txtTime = TimeSlot

End Sub

Fig 8.4.12 Setting up the hidden fields and checking if the slot is free or booked

VBA Starting v5-1.doc Page 144 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
Change the click event for [Court 1] to now be as shown in Fig 8.4.12, and add the new procedures

myCheckSlot (checks for a free or booked slot) and myHiddenFields (puts the booking values in the hidden
fields in the form footer). Click on a Court 1 slot and see what happens in these fields. See Fig 8.4.16

All that will now be needed for a Court 1 booking is the Membership or Class nhumber.

8.4.6.2 Setting up a Bookings form.

Create the simple Bookings form from Unit 16 of McBride; this is just a wizard form using the
Bookings table.

Make changes to it as shown in Fig 8.4.13:

=10 %

e Remove scroll bars, record selector and navigation bar. Booking Mo
o Move the Class No and Membership No fields so that they

overlap (you will see why in Figs 8.4.14 and 8.4.16). i e e

e Set the other fields to suitable properties so that they do Member/Class
not look like data entry fields, and set the Locked property
10 Yes. Fmesbiizhip Mo |_1
Date
Tine

Fig 8.4.13 The basic Bookings form

This form can now be opened from the Bookings Crosstab form and the values in the hidden fields on

that form can be copied to the relevant fields on the Bookings form when the Bookings form is
opened, in the Form_Load event. The user then enters the Membership or Class No and saves the
booking (for now, closing the form will do that). When the form is closed, code in the Form_Close event

will close and reopen the Bookings Crosstab form, thus refreshing it and showing the new booking on

that form.

Put the code shown in Fig 8.4.14 in your Bookings form code module.

Private Sub Form_Close()
'close and reopen Bookings Crosstab form to refresh it and show the new booking.

DoCmd.Close acForm, "Bookings Crosstab"
DoCmd.OpenForm "Bookings Crosstab"

End Sub

Private Sub Form_Load()
'copy known information into Bookings form from hidden fields on Bookings Crosstab form

[Room/Hall/Court] = Forms![Bookings Crosstab]!txtRoomHallCourt
[Member/Class] = Forms![Bookings Crosstab]!txtMemberClass

[Date] = Forms![Bookings Crosstab]!txtDate ‘this is the form header date
[Time] = Forms![Bookings Crosstab]!txtTime

'check for member or class booking

If [Member/Class] = myconMember Then ‘show Membership No field ready for data entry
[Membership No].Visible = True
[Class No].Visible = False
[Membership No].SetFocus

Else ‘show Class No field ready for data entry
[Membership No].Visible = False
[Class No].Visible = True
[Class No].SetFocus

End If

End Sub

Fig 8.4.14 code for the basic Bookings form for form Load and Close events.

VBA Starting v5-1.doc Page 145 Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.6.3 Making Member/Class Bookings.

Change your [Court 1] Click event so that it looks like the code in Fig 8.4.15, and add the new
procedure myBooking.

Private Sub myCheckSlot(prmSlot As TextBox)
'see if slot is free or booked.

Create click events for

If IsNull(prmSlot) Then 'is the slot Null? the other two Courts.
myBooking ‘call booking procedure
Else Then you can make
MsgBox "This slot is already booked" member bookings for all
End If three Courts.
End Sub

Private Sub myBooking()
‘called when a free slot is clicked
'‘Bookings form uses the information in the hidden fields to make the booking

DoCmd.OpenForm "Bookings", , ,, acFormAdd

End Sub

Fig 8.4.15 opening the Bookings form for a member booking (new code in bold)

Now, open the BookingsDate form, enter a date and click on the See booking page for this date
button. Click on a free Court slot and see the Bookings form open ready for the Membership No to be
entered. Enter a Membership No and close the form; the booking will be saved automatically and the
Bookings Crosstab form will be refreshed to show the new booking. See Fig 8.4.16.

The process needs to be improved to ensure that the user does enter a Membership No and to check
for double-bookings, amongst other things. These improvements are left for you to do; see Fig 8.4.18.
1ol x|

>

Please enter date |13,|’5,|’1996

for booking

See booking page

far this date
o/
Bookings for: Monday 13 May 1996
TimeSlat Court 1 Court 2 Court 3 Fitness Suite Sports Hall1  Sports Hall 2
pEo0 I I I I I
oo I I I I I
| | X
12:00 | [ | Booking N
12:00 [ [ | Room/Hall/Court .
14:00 I I Member/Clazs .
15:00 I I tMembership Mo I
16:00 | |
Date 13/5/1995) ==
17:00 | | ’
| e -
18:00
Note the values ] | —
in the hidden = i i | | | |
fields (not yet :
hidden here) P [Cout1 | [True 15000

Fig 8.4.16 making a Member Court booking.
You should now be able to work out how to make Class bookings. Simply create Click events for the

Fitness Suite and the two Sports Halls following the example shown in Fig 8.4.12 for Court 1,
remembering to use myConClass instead of myConMember. Note how useful reusable procedures are.

VBA Starting v5-1.doc Page 146 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.4.6.4 Using alist box for the Membership/Class No.

It is not good practice to expect the user to type in the Membership/Class No (and certainly not good
practice simply to assume that it will be for a valid member/class!). Unless your system is using (or
simulating) a swipe card for all entries, a list box as used in sections 3.6, 8.2.6 and 8.3.1 could be a
good way to ensure correct data entry.

Extend your booking form and add two list boxes, one each for Member and Class, with associated
textboxes to allow the user to filter the contents of the boxes. Add code to make the list boxes work
correctly and to put the chosen number in the Membership No or Class No field as appropriate. To make
sure that the user does not type the number directly in the Bookings form set the Locked properties for
these two fields to Yes.

The form will look decidedly cluttered with two list boxes, and will also be misleading as only one list
box is needed at a time. So move the list boxes and the associated filter text boxes so that they
overlap, and add code to the Bookings form Form_Load event to set the Vvisible properties for the text and
list boxes so that only the relevant items are visible for the type (Member or Class) of booking. The
code in Fig 8.4.14 already does this for the Membership No and Class No fields, so you merely need to
add to this coding. You should then be able to reduce the size of your form.

8.4.7 Deleting Bookings.

The code done so far has put the booking details in hidden fields on the Bookings Crosstab form, but
we do not know the Booking No for the booking. However, using the DLookup function we can get this,
plus the details of the Member/Class for the booking. We can then display the details of the bookings
and ask the user if they want to delete the booking or not, and take action as appropriate.

The code to do this will go in a new procedure in the Bookings Crosstab form module. See Fig 8.4.17.

There’s a lot of code here, but it is all pretty straightforward:

1. The code starts with a set of variable declarations, into which the booking details and various SQL
clauses/statements will be put.

0 Note that the Booking No and other IDs are AutoNumber fields so are Long Integer (look at the
field definition in table design view).

2. Given the room, date and time, there should be just one booking record in the Bookings table, so
the DLookup function is used to find that Booking No.

0 The variable strwhere is used for the WHERE condition for DLookup, rather than coding the
condition directly into the function. This makes it easy to check at run-time (or failure-time!)
what the condition looks like, using the Debugger.

3. Bookings are for either a Member or a Class, as indicated by the value (True/False) in the hidden
field txtMemberClass. So this value is then used to get the Member or Class details as appropriate.
Lots more DLookup statements are used (this is a very useful function).

o0 The condition in strwhere is reused, another reason for putting it in a variable.

4. Now that we have the details of the booking we can display them and ask the user if he/she
wishes to delete the booking.

o For simplicity here | have used a standard format message, but the details could vary for
Member/Class bookings. For example, it could be useful to show the telephone number for a
member booking in case the user wishes to contact them about the booking.

o The reply from the Yes/No question has been put into a variable, partly to simplify the coding
a bit (it's a long message to display and there’s a fair bit of coding to do if the user replies Yes)
and partly so that it can be checked in the Debugger whilst testing.

5. If the user replies Yes, then an embedded SQL statement is used to DELETE the record for this
booking; easy to do as we have found the Booking No.

0 DoCmd.SetWarnings is used to suppress the standard Access messages (“You are about to
delete...” etc).

0 After the deletion has been done, the form is requeried using Requery. This will rerun the query
on which the form is based and redraw the form, thus showing the slot as now free. Compare
this with Repaint which merely completes any pending updates for a normal bound form.

6. Finally, a check needs to be made to see if the room is now free all day, in which case the column
will be missing from the Crosstab query, and the form will show “#Name?” all the way down the
column. It looks like Requery does not cause the Form_Load event to be called again. See Fig 8.4.9.
And that’s it.

VBA Starting v5-1.doc Page 147 Version 5.1 — July 2005



VBA Trainer - Getting Started

Part 8 — Worked Examples of Booking procedures

Private Sub myDeletion(prmslot As TextBox)

'called when a booked slot is clicked

'this code uses the information in the hidden fields

Dim IngBookingNo As Long 'booking number for the selected booking

Dim strWhere As String 'used for complex WHERE conditions for agg functions and SQL

Dim IngMemberNo As Long 'Membership No if a Member booking

Dim IngClassNo As Long 'Class No if a Class booking

Dim strDetail1 As String 'member Lastname, or Class Activity

Dim strDetail2 As String 'member Firstname or Class Tutor

Dim intDelete As Integer 'yes/no reply from MsgBox (check with vbYes/vbNo)
Dim strSQL As String 'SQL for RunSQL

'first get the booking no
strWhere = "[Room/Hall/Court] =" & txtRoomHallCourt & "" _
& " AND [Time] = #" & txtTime & "#"
& " AND [Date] = #" & txtDate & "#"

IngBookingNo = DLookup("[Booking No]", "Bookings", strWhere)

'then get the member/class details for the booking

If txtMemberClass = True Then 'member booking
IngMemberNo = DLookup("[Membership No]", "Bookings", strWhere)
strDetail1 = DLookup("Lastname", "Membership", "[Membership No] =" & IngMemberNo)
strDetail2 = DLookup("Firstname”, "Membership", "[Membership No] =" & IngMemberNo)

Else ‘class booking
IngClassNo = DLookup("[Class No]", "Bookings", strWhere)
strDetail1 = DLookup("[Class Activity]", "Classes", "[Class No] =" & IngClassNo)
strDetail2 = DLookup("[Class Tutor]", "Classes", "[Class No] =" & IngClassNo)

End If

'Now ask the user to confirm the booking
intDelete = myYesNoQuestion("Booking details are:" & vbCrLf & vbCrLf _
& "Booking No: " & IngBookingNo & vbCrLf _
& "By: " & strDetail1 & ", " & strDetail2 & vbCrLf _

& "For: " & txtRoomHallCourt & " on " & txtDate & " at " & FormatDateTime(txtTimé

& vbCrLf & vbCrLf & "DELETE THIS BOOKING?")
If intDelete = vbNo Then
'do nothing
Else
'delete the booking
DoCmd.SetWarnings False
strSQL = "DELETE * FROM Bookings WHERE [Booking No] =" & IngBookingNo
DoCmd.RunSQL strSQL
DoCmd.SetWarnings True
Requery 'requery the form to show the slot now free

'check to see if all bookings for this room and date have been deleted
strWhere = "[Room/Hall/Court] =" & txtRoomHallCourt & "" _
& " AND [Time] = #" & txtTime & "#"
If DCount("[Booking no]", "Bookings", strWhere) = 0 Then 'yes - room free all day
'MsgBox "bookings all gone" ‘testing only
prmslot.ControlSource = ""
prmslot = Null ‘clear the error "#Name?# contents of the field
End If

[court 1].SetFocus  'otherwise this goes to the first time slot and looks weird.
End If

End Sub

Explanation
point 1

Explanation
point 2

Explanation
point 3

Explanation
point 4

., vbShortTime) _

Explanation
point 5

‘A

Explanation
point 6

Chelmer Leisure and Recrea %] Chelmer Leisure and Recreati
P “p | Booking details are:
</ </

Booking details are:

Booking Mo 19 Booking Mo: 2

By: Carbwright, Denise By Weight Training, Franks
For: Fikness Suite on 13 May 1996 ak 11:00

Far: Court 1 on 13 May 1996 at 15:00

DELETE THIS BOOKIMNGY DELETE THIS BOOEIMNGY

Yes Mo | fes

Fig 8.4.17 Procedure to delete a booking

VBA Starting v5-1.doc Page 148 Version 5.1 — July 2005




VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures

8.4.8 Finally...

You have now seen how to create a Booking Diary Page form, and a way of making and deleting
bookings via this form.

Some improvements that should be made to the booking process are listed in Fig 8.4.18. You should
be able to work out how to do these by following earlier examples in this document.

Item Comments

Validate the date parameter in As in Fig 8.2.20.
the BookingDate form.
Perhaps change the form to use | See section 5.6.
a calendar control.

On the Bookings form:

e Add a Confirm Booking e Use wizard for Save Record and add code in the error
button, check that a procedure to check for double booking as in as in Fig 8.2.17.
Membership or Class Ask an ‘Are you sure?’ question.

number has been entered,
and trap double-bookings.

e Add a Cancel Booking e Clear the data fields, close the form. Could use Wizard for
button. Undo.
e Trap unsaved changes o User may attempt to close the form after entering a Class No

or Member No. See section 2.5.2.
e Use alist box forthe userto | ¢ See section 8.4.6.4.
select the required

member/class.
Stop the user from You could check the date in txtdate in the
making/deleting bookings for myBookings/myDeletions procedures, or include this as part of
dates in the past. the date validation checks. The latter will not allow the user to

check details of past bookings, but that may not matter.

Fig 8.4.18 Suggestions for improvements to the diary page bookings facility.
Work out your own test plan.

8.5 Exercises

8.5.1 Member Bookings

Implement and test the tasks discussed in section 8.2.10.

8.5.2 Class Bookings
Implement and test the tasks discussed in section 8.3.6.

This example was not illustrated in as great a detail as example 1, as the items missed out have been
demonstrated elsewhere in this Trainer and in this Part of the Trainer.

8.5.3 Using a ‘diary page’ grid.

Implement and test the tasks discussed in section 8.4.8.

VBA Starting v5-1.doc Page 149 Version 5.1 — July 2005



VBA Trainer - Getting Started Part 8 — Worked Examples of Booking procedures
8.5.4 Recording attendance.

With some booking systems (hospital, doctor or dentist appointments, for example) it is important to
be able to record whether or not a client has attended the appointment. The system can then analyse
missed appointments, and write to (or even blacklist!) offenders.

A way of doing this could be to...

e ...add a Yes/No field (Attended) to the Bookings table, with a default value of No.

e ...when a user clicks on a booked slot (sections 8.2.9 and 8.4.6) give them the choice of deleting,
recording attendance or cancelling.

0 You could use MsgBox with vbYesNoCancel buttons (or create your own myYesNoCancelQuestion
procedure — see section 1.7.2) and tell the user to click Yes for Delete, No to record
attendance or Cancel to do nothing. This would be fairly simple to code but could be
confusing for the user. As far as | can see, it does not appear to be possible to specify your
own button text for a MsgBox question.

o0 A better method may be to have a new form which displays the required booking details, and
has its own Confirm Delete, Record Attendance and Cancel buttons behind which you put the
appropriate code.

o ...if the user chooses to record attendance then use an embedded SQL UPDATE statement to

SET the Attended field value to Yes for the specified booking. See section 6.4.

END OF MAIN PART OF TRAINER

The Appendices are on the following pages.

The Index is at the end of the document.

VBA Starting v5-1.doc Page 150 Version 5.1 — July 2005



VBA Trainer - Getting Started

Appendix A — Events Overview
For the full list of events for an object or control, consult the property box

Appendix A — Events overview

Event Occurs on: When Invoked Example of Use
Frm | Rpt | Cmd Txt Cbo Opt | Frm | Rpt
btn box box btn sec | sec
On Current v Focus moves from one record to another Set form defaults for each new record.
Before Insert v When first character is typed in new record
After Insert v After a new record is inserted Confirmation message to user
Before Update v v v Before new field or record is updated Custom validation(s)
After Update v v v After new field or record is updated Field — calculate/copy values automatically; set buttons
Form — confirmation message to user
On Delete v When record is deleted Confirmation message to user
Before Del Confirm v Before confirming a deletion ‘Are you sure?’ procedure
After Del Confirm v After confirming a deletion Confirmation message to user
On Open v v Before form or report is opened Change/set defaults
On Load v When form or report is loaded Set form or report defaults; copy data from another form
On Resize v When a form is resized
On Unload v Before form or report is unloaded
On Close v v Before form or report is closed Display statistics/totals; open another form
On Change v v When the data is changed Confirm message/question
On notin list v When value not in limited list is entered Dynamic updating of list for combo box based on a table
On Enter v v v When a control first gets the focus Change font
On Exit v v v When a control loses the focus on the same form Reset font
On Got Focus v v v v v When control or form gets the focus Change default properties
On Lost Focus v v v v v When control or form loses the focus Reset default properties
On Click v v v v v When control is clicked Command buttons
On Double Click v v v v v When control is double-clicked Select item from list box
On Mouse Down v v v v v v When mouse button is pressed Pop-up menu or help?
On Mouse Move v v v v v v When mouse moves
On Mouse Up v v v v v v When mouse button is released
On Key Down v v v v v v When a key is pressed Check for custom hot keys used
On Key Up v v v v v v When a key is released
Key Preview v Yes = invoke keyboard events for forms before
keyboard events for controls. No = other way around
On No Data v When a report has no records Appropriate information to user; empty report, cancel
On Page v Before a page is printed Warn user if special stationery is needed
On Error v v When a run-time error occurs in a form or report Suitable message or action
On Filter v When a filter is edited
On Apply Filter v When a filter is applied or removed
On Timer v When timer interval reaches zero Close application if left unused; dynamic date/time
Timer Interval v Specify timer interval in milliseconds Use with On Timer event
On Format v Before section is formatted Suppress detail lines
On Print v Before section is previewed, printed or saved Dynamic changes to controls on report
VBA Starting v5-1.doc Page 151 Version 5.1 — July 2005




VBA Trainer - Getting Started

Appendix B — Coding Standards

Appendix B — Coding standards

Standard Reason

1 Always put explanatory comments in  Comments make the code easier to understand and
your code. debug.

2 Use meaningful names for Meaningful names make the code easier to
procedures, variable names, etc. understand, write and debug.

3 Indent your code. Indenting makes the code easier to read as it shows
the limits of IF, DO etc, and will also make incorrect
coding easier to spot (and easier to avoid in the first
place).

4 Use different (but concise and Some students simply code ‘Error’ for error messages.
explanatory) error messages. A A message like this is not at all useful, either to the
reference to the code module could user, or to the programmer trying to find out which
also be useful. piece of code generated the error.

5 Code one task per procedure. A procedure with many tasks can get very complicated.
If a task is broken down into procedures, each
procedure can be tested separately and the main
procedure will be easier to code, debug and
understand). Some of the sub-procedures may be
useful elsewhere as general procedures (code re-use).

6 Write re-usable procedures where A little time spent on planning (for example, a common
possible. message procedure) can save a great deal of time later

in testing, debugging, coding and maintenance. Code
is also consistent and easier to follow.

7 Do not duplicate code. Duplicated code makes more work (with more
(if you find you are using ‘cut and possibility for errors) for the developer, and can cause
paste’ to copy bits of existing code problems with mainten_ance as the maintainer must
into a new procedure, then this search for (and may miss) all occurrences of the code.
probably means you need to use a See point 6 above
re-usable procedure).

8 Use ‘Private’ for forms and reports, Saves memory.
unless you know that the Avoids the problem of accidentally coding duplicate
procedures, variables, constants etc  gmes.
are also going to be used elsewhere.

9 Put object-specific code in the For example, put all code specific to a particular form’s
appropriate module. events in the code module for that form.

10 Use ‘Public’ for procedures, This is what ‘Public’ means, and is what Access
variables, constants etc that are for modules are for.
general use. These will normally be A maintenance programmer will look in Access
coded in an Access module. modules to see what standard procedures, variables,
(See also Appendix C, point 8). constants etc are available.

11 Prefix procedures and general This can help both developer and maintenance
variables/constants with a code programmer to identify the module in which these are
identifying the module and/or the coded and the datatype. For example, names of VBA
type. constants are all prefixed with ‘vb’. You could prefix

your own constants with ‘con’ or ‘mycon’. More
examples are given in Appendix E.
12 Code each new statement on a new  This makes code much easier to read and maintain.

line.

Do not code IF ... ELSEIF ... all on one line.

VBA Starting v5-1.doc

Page 152 Version 5.1 — July 2005




VBA Trainer - Getting Started

Appendix C —

Appendix C — Common coding errors

Common Coding Errors

Error® Likely Result

1 Using a data name, procedure® Compiler will report that the data item or procedure has not
name, etc. that you have not been defined. Use Option Explicit — see section 1.2.
defined or declared.

2 Typing errors, spelling mistakes in  Compiler will report that the data item or procedure has not
data names, procedure names. been defined. See also error 1 above & 10 below.

3 Embedded spaces in names. For This could cause several errors, depending on context.
example, typing Last Name instead o Put square brackets [ ] around table and field names
of LastName or [Last Name] for a field. e Put “ at either end of non-numeric literals

¢ Define names with no spaces (LastName) or underlines
(Last_Name).

4 Forgetting to code an End The compiler will normally point out that an End is missing.

statement. Check your logic carefully to work out where it should go. If
you indent your code correctly you should remember to
code End statements where appropriate.

5 Missing or incorrect punctuation. ¢ Commas should separate arguments in procedure and

function headings.

e Double quotes should surround non-numeric literal
values in expressions.

e Code Rem or an apostrophe (‘) in front of comments.

e Code a colon (:) after label names. See error 10 below.

6 Forgetting to repeat the subject It may seem logical to code something like
name in a compound If. If intvalue > 5 and < 12 Then...

but VBA, like many other programming languages, expects
If intvalue > 5 and intvalue < 12 Then...

7 Using a private procedure outside  You may get one of the following error messages:

the module in which it is defined Run Time Error 2465 — Object-defined Error.

(or in the debugger — see section or

1.4.3.3). Sub or Function not defined. .
If you really want the procedure to be used outside the
module, then change it to “Public”. If it is to be a general-
purpose procedure, then move it to an Access module.
Change it to Public to test via the Debugger, then back to
Private if necessary.

8 Forgetting to specify the code Suppose you had a Public procedure DoThis coded in the
module for a form or report public module for FormA. In order to reference this procedure from
procedure declared elsewhere. another module, you need to code

... Forms!FormA.DoThis ...
This is another use of the forms collection — see Appendix I.

9 Having more than one data item or  You should get “Compiler Error: Ambiguous Name
procedure with the same name. detected”.

If variables with the same name are coded in different
procedures within the same module, then the scope rules
will come into play. See Appendix F1.3.

10 Compiler error: You are attempting to call a non-existent procedure or

‘Sub or Function not defined’

function.

Some common reasons are:

. You have misspelled the procedure name

e  The procedure is defined as Private

e You have omitted the colon (:) after a label name.

' Note that the compiler will check only for syntax (grammar) errors — i.e. to see that each line (sentence) conforms to the rules
of the language. It does not check that the whole code makes logical sense.

2 Reference to ‘data items’ includes variables, constants, and objects on forms/reports. Reference to ‘procedures’ includes subs
and functions.

VBA Starting v5-1.doc

Page 153 Version 5.1 — July 2005




VBA Trainer -Getting Started

Appendix D — Code documentation form

Appendix D — Code Documentation Form

CODE MODULE DOCUMENTATION FOR DATABASE
TYPE*: Form /Report/Access NAME Page of
* delete or circle as appropriate
Object Type Event Name Public | Brief description
Prepared by date
VBA Starting v5-1.doc Page 154 Version 5.1 — July 2005




VBA Trainer -Getting Started Appendix D — Code documentation form
Appendix D — Code Documentation Form

Samples of completed form, showing the procedures and functions developed
during Part 1 of this Trainer.

CODE MODULE DOCUMENTATION FOR Chelmer Leisure Centre DATABASE
TYPE*: Form / RepestiAcecess NAME Membership Category Page 1 of 1
* delete or circle as appropriate

Object Type Event | Name Public | Brief description

Test fee Command | Click cmdTestChanges_Click Runs query Check Update Fee to
changes button show result of applying

button calculations

Make Fee | Command | Click cmdMakeFeeChanges_Click Updates the Membership
changes button Category table

button

CODE MODULE DOCUMENTATION FOR Chelmer Leisure Centre DATABASE
TYPE*: Eerm{Repert/Access NAME Calculations

Page 1 of 1

* delete or circle as appropriate

Object Type Event | Name Public | Brief description

N/a N/a N/a myUpdateFee Yes Calculate new fee for given row

of membership category table

CODE MODULE DOCUMENTATION FOR Chelmer Leisure Centre DATABASE

TYPE*: Fesm-/Repert/ Access NAME Messages And Questions Page 1 of 1

* delete or circle as appropriate

Object Type Event | Name Public | Brief description

N/a N/a N/a myDisplaylnfoMessage Yes Takes and displays a given
message

N/a N/a N/a TestDisplaylnfoMessage Used to test the above procedure

N/a N/a N/a myYesNoQuestion Yes Takes and asks a given question,
returning user’s Yes or No reply

N/a N/a N/a TestYesNoQuestion Used to test above function

VBA Starting v5-1.doc Page 155 Version 5.1 — July 2005




VBA Trainer -Getting Started
Appendix E — Some naming conventions for variables,

Appendix E — Naming conventions

procedures etc.

It is good programming practice to prefix names in code with identifying characters. This does not
normally apply to names of items in tables (and the corresponding fields on forms and reports).

A list of some commonly used prefixes is shown below. This Trainer has used some of these in the
code. Some of the list below are used in the “Further VBA” Trainer.

The prefix usually indicates the type and the rest indicates the purpose of the item. Prefixes can be
combined (but can then lead to rather unwieldy names).

Item / Type Prefix(es) Example/comment

Access action ac acPreview (see wizard code for previewing a report)
constant

ActiveX object oCcX ocxCalendar in section 5.6

Boolean bool, b bNoData in section 5.5.2

Combo Box cbo cboFindName in section 3.4.2

Command Button cmd cmdClose in section 1.1.3

Constant const or con myconChelmerName in section 1.7.1, conBkgStartTime in section 6.6.

Currency cur curPrice in F.2.2

Database db, dbs dbsTheDatabase in section 3.2.1 of “Further VBA” Trainer V5.0

Date dt or dte dtBkgTime in section 6.6

Field fid

Form fm, frm

Index idx idxCounter in Appendix F.3.3.

Integer | orint intYear in section 3.3.3.1

List Box Ist IstNumbers in section 6.5

Page in tab control | pg PgPersonal in section 7.2.

Parameter prm prmFee in section 1.4.1.

Private priv Use to specify if own procedures or constants are restricted to
the module in which they are coded

Public pub Use to specify if own procedures or constants are intended for
general use. The function myYesNoQuestion could have been
called mypubYesNoQuestion.

RecordSet rs, rst rstTest in section 3.2.4 of “Further VBA” Trainer V5.0

String variable str, st strName in section 3.5.1, stDocName in section 1.6

TableDef td, tdef, tbdef

Text Box (unbound) | txt txtvalue in section 3.2.2.1

Variant datatype v, var VCourt1Array in section 4.3.1 of “Further VBA” Trainer V5.0

VB own constants vb vbRed in section 3.2.2.2, vbinformation in section 1.7.1

Workspace ws

Your own items my myYesNoQuestion in section 1.7.2. (or mypubYesNoQuestion)

myconChelmerName in section 1.7.1 (or mypubconChelmerName)

This prefix can be useful to alert maintenance programmers to
the fact that the item being used is not a standard Access item.

VBA Starting v5-1.doc

Page 156 Version 5.1 — July 2005




VBA Trainer -Getting Started

Appendix F — Some basics of programming

Appendix F — Some Basics of Programming

The purpose of this document, as stated in the Preface, is not to teach you how to program. The best
way to learn how to program, just like the best way to learn a human language, is to practice it as
often as you can. The more you do, the better you should get.

This Appendix discusses briefly several basic concepts which are also applicable to programming in
general. An understanding of these will help you with programming, whatever language you use.

There are two main things that you need to be able to do in order to program:

e You need to be familiar with the language that you are using, how it works and the tools that the
language provides for you. This Trainer tries to provide you with some of that information, and to
equip you with the skills necessary to find out more.

e You need to appreciate just what it is that you trying to do, and the logic that is necessary for you
to achieve it. In my experience, it is this aspect of programming that students normally find
difficult. Computers run the code that you have written, not what you think you have written. You
should plan what you want to do on paper first, and dry-run it, before getting anywhere near a
keyboard; only very good and/or very experienced programmers can work things out at a
keyboard (and even then, they can get it wrong).

F.1 Declaring and using variables and constants

F.1.1 Datatypes

Whenever you declare a variable or a constant, an area of memory is reserved for you, and you refer
to it by the name you have chosen in the definition. The programming language converts this name to
an address in order to reference the location in memory.

All values in datatypes (and indeed, all content of bytes in memory, including code) are held in binary,
a sequence of noughts and ones. Early programmers actually coded in binary, and later programmers
needed to know how to interpret stores dumps printed out in hexadecimal (when a program failed, the
entire content of memory was ‘dumped’ out to a printer, in hexadecimal, and programmers had to

know how to find their way around this dump and be able to do hexadecimal arithmetic, as well as

recognise instruction code). These days, with modern Debuggers, the underlying binary code can be
hidden from view and many students forget how data is actually stored.

Consider a byte (8 bits) with the binary content shown here: | 0100 0001
What does this represent?
The following dialog boxes are from Word Insert->Symbol:
21 21
Symbols | Special Characters I Symbiols | Spedial Characters I
Fonk: IAriaI LI Font: |Ar\al ;I
LT s (%[ & T(DH [+ /= LT T#lswla] T() [T+ 7
3(4(5|6|7(8|9|:]; = ? 3/4|5|6 819(:1|; =|(>|7
CIDIEIF|IGIH| I |J|K M[{N|O CID|IE|IF|G|H|I|J|K|L|M|N|O
siTlulviw[x[Y[zlTIV[1]~] . s|Tlulvwix]Y[z[T[\]1]~]_
Recently used symbols: Recently used symbols:
[z][o|€le|ulelelv]-] [£]¥[e]®][™[£] || |Alcln|€e|®%]elé]v] ] [£]¥[0]®™
LATIN CAPITAL LETTER A Character code: [0041 from: |nsc11 (hes) j LATIN CAPITAL LETTER & Character code: |65 from: |-°«SCII {dedmal) j
AukoCorrect. .. | Shortcut Key... | Shortcut key: AuboCarrect... | Shorteut Key. . Ut key:
/ Insert: I Cancel | Insert I Cancel |/
Character code (hénd décimal)
VBA Starting v5-1.doc Page 157 Version 5.1 — July 2005




VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

Hexadecimal 41 = binary 0100 0001 = decimal 65

Giving an area of memory a datatype is needed to inform the processor what the content is intended
to represent.

A byte containing 0100 0001 could therefore represent...
...the letter ‘A’ if it has a String datatype.
...the (decimal) number 65 if it has a Byte datatype.

Datatypes also specify the length (in bytes) of the variable or constant. Some are fixed for the
datatype; see Access Help for datatypes used for tables, and VBA Help for details about the Dim
statement. Note that the Variant datatype is the default datatype if no datatype is specified. All
textboxes on forms and reports are Variant. A Variant datatype is the only datatype that can take a
Null value.

F.1.2 Variables and constants

A variable is a named area of memory whose contents can change at run-time. Example:
e stDocName in section 1.6, used by the RunQuery wizard code to store the name of the query.
e intAge in section 3.2.3.1 used to store the result of the calculation of a person’s age.

A constant is a named area of memory whose contents are fixed, and cannot be changed by code

(or anything else) at run-time. If you attempt to assign a value in code, you will get the compile error:

“Assignment to constant not permitted”. If you want to change the contents of a constant, then you

must change the code via a code window; the new value is then fixed for all future uses of the

application. Example:

e myconChelmerName in section 1.7.1, used to get a standard heading for forms, reports and
messages.

Access VBA also has its own list of constants, some of which (vbRed, vbinformation) you have already
seen in this Trainer. For fuller information check VBA help with the keyword constant.

F.1.3 Scope

Variables and constants are referred to by name. Scope rules determine, amongst other things, which
variable/constant is being referred to if there are two or more with the same name.

If a variable is called, for example, intCounter, in two different procedures, then each procedure has its
own local variable called intCounter, and the two are recognised as being different variables and thus
different areas of memory. They exist only within their own individual procedure.

If a module has a global variable called intCounter (declared at the head of the module, outside any
procedure) it is available for use by all procedures in that module (and, if declared as public, by other
procedures as well).

If a module has a global variable called intCounter and a procedure within that module also has a local
variable called intCounter, then the code will compile OK, but, at run-time, the code inside the procedure
will use the local variable in preference to the global variable. This may or may not be what you want.

It is thus good practice to use different names for global and local variables. The compiler will not get
confused if the names are the same, but you might! It could perhaps be useful to use a prefix for
global variables (for example globintCounter) to avoid confusion (yours, that is).

Similar rules apply when naming procedures (sub or function), as these are also referred to by name.
This is one reason why this document suggests that procedures and public constants/variables that
you write for yourself are prefixed (see Appendix E).

For further information see VBA Help Answer Wizard with the keyword scope.

VBA Starting v5-1.doc Page 158 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

F.1.4 Public/Private

Items declared as Public are available for use by code in other modules.
Items are Private by default, available for use within their own module only.

For further information use the VBA Help Answer Wizard with the keywords, Public or Private.

F.1.5 Arrays

In this Trainer you have seen the use of many different datatypes. One other very useful datatype
(used in Part 4 of the Further VBA Trainer v5.0) is array.

An array is simply a set of elements of the same datatype, but this is a concept that some students
find difficult to grasp. You may find it useful to visualise an array as a set of pigeonholes.

For example, the following is a declaration and a visual representation of an array of 10 integer
elements:

Note:
Dim intArray(1 To 10) As Integer Dim intArray (1 — 10) As...
. will NOT compile.
. You must use ‘To’, not a hyphen.

1 2 3 4 5 6 7 8 910

Each element in the array is referred to by the array name and the element number (known as the
array index or subscript). Examples:

intArray (3) =1  ‘put the value 1 in element number 3

Dim idxCounter as Integer
idxCounter = 3
intArray(idxCounter) = 1 ‘put the value 1 in the element indexed by idxCounter (3)

The index value for an array must be numeric, but does not need to start from 1. You can use a range
that makes more sense in the context. For example, suppose we want to count up the bookings made
in the years 1996 to 2000 inclusive:

Dim intBkgArray(1996 To 2000) As Integer
intBkgArray(Year(dtBookingDate)) = intBkgArray(Year(dtBookingDate)) + 1 ‘add 1 to total

This code assumes that:
e The booking date from the record is in a date/time variable called dtBookingDate
e The booking date has been validated to have a year in the range required for the array.
o If you attempt to reference an element that does not exist (intBkgArray(2001) for example)
then you will get a run-time error as the index (subscript) is out of range.

You can also use constant variables for an array range:
Const intStartYear = 1996
Const intEndYear = 2000
Dim intBkgArray(intStartYear To intEndYear) as Integer

The Debugger is especially useful for looking at values in arrays, as you see each element separately
and watch as the code executes. See the screenprint in section 4.3.4 of the Further VBA Trainer v5.0.

The Lucky Numbers example database on http://www.cse.dmu.ac.uk/~mcspence/Access shows how
to use an array of 49 elements to check that that a random lottery number in the range 1 — 49 has not
been chosen already.

VBA Starting v5-1.doc Page 159 Version 5.1 — July 2005


http://www.cse.dmu.ac.uk/~mcspence/Access�

VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

F.2 Assignment statements

F.2.1 General format

Assignment statements are statements that put (assign) a value in a variable, constant, property, the
return value for a function, field on form/report, etc. The general format of an assignment statement is:

Destination = {Value | Expression | Name}
e The destination is always on the left of the statement.
¢ {} means choose one from the list
o ‘Value’ means a literal value used in the code
o ‘Expression’ means the result of a formula
o ‘Name’ means the value in another variable or constant

For example:
Dim intCounter as Integer
Const conStartValue = 1 ‘assign value 1 to a constant — example using numeric literal value
intCounter = 0 ‘set to zero — example using numeric literal value

intCounter = intCounter + 1 ‘add 1 to value already in intCounter — example of expression
intCounter = conStartValue ‘copy value from another variable/constant

When assigning values, you must be careful to ensure that the datatypes on each side of the
statement are compatible. For example, you cannot assign a non-numeric value to a numeric variable.

For further information look at the VBA Help Answer Wizard with the text assignment statement.

F.2.2 Literals
A literal is a value that you specify directly in code.

In the examples in section F.2.1:
intCounter =0 ‘0 is a numeric literal
intCounter = intCounter + 1 ‘1 is a numeric literal

Numeric literals are coded simply as numbers. They do not have to be integers:
Dim curPrice as Currency
curPrice = 5.5 ‘puts £5.50 in curPrice

String literals must be enclosed in quotation marks, to avoid confusion with variable/constants that
may have the same name:
Dim Test as String
Dim strName as String
strName = “Test” ‘puts the string “Test” into the variable strName
strName = Test ‘copies contents of the variable called Test into the variable strName

Date/Time literals must be enclosed in hash (#) marks:
Dim dtDate as Date
Dim dtTime as Date
dtDate = #10/09/2004# ‘be careful — this means 9" October 2004!
dtDate = #09 Oct 2004#  ‘will be changed by VB to #10/09/2004#
diTime = #14:34# ‘will be changed by VB to #2:34:00 PM#

VBA Help says: “You must use English (United States) date formats in SQL statements in Visual

Basic. However, you can use international date formats in the query design grid”. See section 8.3.3.
It looks like you must also use USA formats in assignment statements.

VBA Starting v5-1.doc Page 160 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

F.3 Control Constructs

There are three basic control constructs (ways of constructing the logic and code) used within code:
e Sequence
o A simple statement after which control is passed to the next statement.
e Selection
o0 Where code branches to different statements, depending on some condition
e |teration
o0 lterating (repeating, looping) code depending on some condition.

F.3.1 Sequence

There are many examples in this Trainer of sequences, so they will not be discussed further here.

F.3.2 Selection
Examples of selection are IF and CASE.

The syntax of an IF statement (taken from VBA help) is:
The items in [ ] are optional.

If condition Then

[statements] ‘executed if condition is true
[Elself condition-n Then ‘executed if all earlier conditions are false
[elseifstatements] ... ‘executed if condition-n is true
[Else ‘executed if all earlier conditions are false — will catch all other conditions

[elsestatements]]

End If ‘terminates the statement

IF statements can be nested within each other.

For some examples in this Trainer, see sections 1.7.2, 2.5.2 and 3.2.2.2.
Section 3.2.3.1 has an example of a nested IF statement.

A CASE statement is way of coding a selection when you are checking the same variable several
times. It can be neater and clearer to follow than using a lot of Elself clauses.

The syntax of a CASE statement (taken from VBA help) is:
The items in [ ] are optional.

Select Case testexpression ‘the item being checked
[Case expressionlist-n ‘the check for each expression
[statements-n]] ... ‘executed if expressionlist-n is true
[Case Else ‘executed if all earlier conditions are false — will catch all other conditions

[elsestatements]]

End Select

There is an example in section 1.4.1.

Case statements can be nested within each other.

VBA Starting v5-1.doc Page 161 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

F.3.3 Iteration

Iteration is simply another word for “looping”. It is often required that a block of code is repeated until a
certain condition is True. There are several types of loops in VBA, some of which are discussed briefly
here. They can be nested within each other.

The syntax below is taken from VBA Help.

The items in [ ] are optional.
Items specified as {A | B | C ...} means choose ‘choose one of A, B, C...".

Do ... Loop: Looping while or until a condition is True

Do [{While | Until} condition] Do
[statements] or [statements]
[Exit Do] ‘use for early exit [Exit Do]
[statements] [statements]
Loop ‘end of the loop block Loop [{While | Until} condition]

There are examples of a Do ... Loop in sections 6.5 and 8.3.5.

While ...Wend: Executes a series of statements as long as a given condition is True.

There is no Exit statement allowed for this format. The Do...Loop
statement provides a more structured and flexible way to perform
looping. There is no example of this format in this Trainer.

While condition
[statements]

Wend

For ... Next: Using a counter to run statements a specified number of times. It is particularly useful
with arrays.

For counter = start To end [Step step] ‘If Step is missed off, then 1 is assumed.
[statements]
[Exit For] ‘use for early exit
[statements]

Next [counter]

There is an example of a For ... Next loop in section 6.6.
The following is an example of code to initialise all elements of an integer array to zero:
Dim intArray(1 To 10) As Integer
Dim idxCounter as Integer
For idxCounter = 1 to 10
intArray(idxCounter) = 0
Next

At the end of the loop, the value in idxCounter will be 11.

VBA Starting v5-1.doc Page 162 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix F — Some basics of programming
Appendix F — Some Basics of Programming

If your loop condition is never met, or you do not Exit as expected, then your loop will never end.
You will have what is known as an infinite loop.
You will have to terminate execution by one of:

e Esc

e Break

e Cntrl-Alt-Delete, and then cancel the task in the Windows Task Manager (and lose any unsaved
changes!).

It is probably best to test all loops within the Debugger, so you can check what is going on, and stop
(without losing anything) when you want to.

For further information on loops, look up loop in VBA Help.

F.4 Procedures and Parameters

A procedure is a piece of code that you can call to perform a certain task. As you will have seen in this
Trainer, all event code is contained within a procedure. See also section 1.1.2.

There are various built-in procedures (mainly functions) within VBA; see Appendix H. You can also
create your own, as seen in sections 1.4.1 and 2.4.1.

You may find it helpful to think of calling a procedure as subcontracting the work that you want to be
done to that procedure; you do not necessarily need to know how the work is done, only what is done,
what you need to provide (as parameters) to the procedure and what the procedure will return to you
(as parameters or a returned value). Every procedure has a procedure heading which tells you how to
call it:

Private sub mySub1()

e Thisis a sub procedure.

It is private so can only be used from within the module in which it is written.
Call it by coding: mySub1

There are no parameters

Public sub mySub2(byVal prmDatal as Integer, optional prmData2 as String = “default”)

e Thisis a sub procedure

e ltis public, so can be called from other modules.

e ltrequires two parameters — the documentation should tell you whether these values are
provided by the calling code and/or are returned/changed by the sub.

e The first parameter is passed byVal, which means that only a copy of the value is passed; the
original location value cannot be altered. By default, all parameters are passed byRef.

e The second parameter is optional, so can be omitted. The heading specifies a default value.

e Callitby coding: mySub2 intvalue1, strValue2 or mySub2 intValue1

¢ Note that when calling a sub procedure, the parameters must not be enclosed in round brackets.

Public Function myFunctionl(prmData3 as String) as Boolean
e Thisis a function procedure
e ltis public, so can be called from other modules.
e Itrequires one string parameter.
e ltreturns a Boolean value.
o The return value can be used in an assignment statement or as part of a condition.
. bResult = myFunction1(“String Value”) or bResult = myFunction1(strValue3)
- If myFunction1(“String Value”) then... or if myFunction1(strValue3) then ...
¢ Note that when calling a function, the parameters must be enclosed within round brackets.

See also section 1.7.1 for a discussion of some basic concepts, with examples.

Use the keywords Call statement, procedure, byVal and byRef in VBA Help for further information and
examples.

VBA Starting v5-1.doc Page 163 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix G — Overview of SQL

Appendix G — Overview of SQL

SQL is a huge topic, for which there are many textbooks available for those students who wish to
explore it further. There are also Trainers available within DMU. This Appendix merely lists the syntax
of some SQL statements, for you to reference when using embedded SQL or when creating queries
using SQL rather than the Query Design Window.

Tip: The Query Design Window can be useful to create and test SQL to help you with SQL that you
want to use in embedded SQL code. You can also simplify the generated SQL by removing
unnecessary table qualifications and round brackets.

SQL is not exactly the same for all database software. The general principles may be the same, but
each software product may have its own particular dialect. For example:

e The wildcard * used by MS Access is the % character in some other software.

Crosstab queries may not be available in all database software.

The TOP clause may not be available in all database software.

Some other database software may require single quotation marks for strings.

Access is not fussy about the final semi colon; - other software may insist on it.

Extract from Access 97 Help: Work with SQL in queries, forms, reports, macros, and modules.
"You can use SQL, or Structured Query Language, to query, update, and manage relational
databases such as Microsoft Access. When you create a query in query Design view, behind the
scenes Microsoft Access constructs the equivalent SQL statements. You can view or edit the SQL
statement in SQL view. After you make changes to a query in SQL view, the query might not be
displayed the way it was previously in query Design view.

Some queries can’t be created in the design grid. For pass-through, data-definition, and union
gueries, you must create SQL statements directly in SQL view.”

The rest of this Appendix consists of SQL syntax for you to reference when creating SQL statements.
All these extracts are copied from MS Access 97 Help (I can’t find them in Access 2000/2002; the
VBA Help Answer Wizard with about SQL queries will find just a little bit of information.).

e Items in square brackets [ ] are optional

e Items in curly brackets { } mean that you must choose one from the list

e Three dots ... mean that the item can be repeated (comma-separated).

G.1 CREATE TABLE (to create and define a new, empty, table)

CREATE TABLE table (
field1 type [(size)] [NOT NULL] [index1] Access also has a MAKE TABLE query, used
[, field2 type [(size)] [NOT NULL] [index2] to create a table (with data) from the result of
L running a SELECT...INTO query based on
[, CONSTRAINT multifieldindex [, ...]] other tables/queries.
)

Simple example to create a table with a single text column of length 3:
CREATE TABLE New (field1 char(3));

There are examples of CREATE TABLE SQL statements in section 6.5, and in the Further VBA
Trainer.

G.2 ALTER TABLE (to change definition)

ALTER TABLE table {
ADD {COLUMN field type[(size)] [NOT NULL] [CONSTRAINT index] | CONSTRAINT multifieldindex} |
DROP {COLUMN field | CONSTRAINT indexname}

}

Simple example to add a primary key to the table created in G.1 example above:
ALTER TABLE New ADD CONSTRAINT new_pk PRIMARY KEY (field1);

VBA Starting v5-1.doc Page 164 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix G — Overview of SQL
Appendix G — Overview of SQL

G.3 CONSTRAINT (to define keys and relationships)

Single-field constraint:

CONSTRAINT name {PRIMARY KEY | UNIQUE | NOT NULL |
REFERENCES foreigntable [(foreignfield1, foreignfield2)]}

Multiple-field constraint:

CONSTRAINT name

{PRIMARY KEY (primary1[, primary2 [, ...]]) |

UNIQUE (unique1[, unique2 [, ...]11) |

NOT NULL (notnull1[, notnull2 [, ...]1) |

FOREIGN KEY (ref1[, ref2 [, ...]]) REFERENCES foreigntable [(foreignfield1 [, foreignfield2 [, ...])]}

Relationships in Access are normally defined via the Relationships Window.

G4 INSERT (to insert data)

Multiple-record append query:

INSERT INTO target [IN externaldatabase] [(field1], field2[, ...]])]
SELECT [source.]field1[, field2[, ...]
FROM tableexpression

Single-record append query:

INSERT INTO target [(field1[, field2][, ...]])]
VALUES (value1], value2], ...])

Simple example to add a row to the table New created in G.1:
INSERT INTO New ( Field1 ) VALUES (“abc”);

There are examples of INSERT SQL statements in sections 6.3, 6.5 and 6.6, and in the Further VBA
Trainer.

G.5 CREATE VIEW
There does not appear to be a CREATE VIEW statement in MS Access.

Outline syntax is:
CREATE VIEW ViewName AS
SELECT....etc — normal SELECT statement

When you run an SQL statement in software such as sqlplus, or in an XSQL file, the SQL is run but
does not ‘exist’ anywhere in particular in the database. If you want to use it again somewhere else,
you need to copy and paste the code, which is bad practice. So you create an SQL View, which is
simply a definition for a virtual table; it does not contain any data, but SQL SELECT statements can
be based on a View as though it were a table.

In MS Access, all queries that you create are named and stored within the database. They can then
be used from anywhere within the database, and forms and reports are normally based on a query
rather than a table. MS Access queries are thus effectively the same as SQL views.

VBA Starting v5-1.doc Page 165 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix G — Overview of SQL

Appendix G — Overview of SQL

G.6 SELECT for inner join

SELECT [predicate] { * | table.* | [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}
FROM tableexpression [, ...] [IN externaldatabase]

[WHERE... ]

[GROUP BY...]

[HAVING... ]

[ORDER BY... ]

[WITH OWNERACCESS OPTION]

An inner join “Combines records from two tables whenever there are matching values in a common
field.” This is the default join in a SELECT query, and the one with which you should all be familiar.

The example below shows two methods of coding an inner join SELECT statement, to list
membership numbers and category details in the Chelmer Leisure database. Note the different
methods of specifying the join between the Membership and Membership Category tables.

Standard SQL (as used by most database software):

SELECT [Membership Category].[Category No], [Membership Category].[Category Type],
[Membership Category].[Membership Fee], [Membership].[Membership No]

FROM [Membership Category], [Membership]

WHERE [Membership Category].[Category No]=[Membership].[Category No]

ORDER BY [Membership Category].[Category NoJ;

SQL generated by MS Access Query Design Window:

SELECT [Membership Category].[Category No], [Membership Category].[Category Type],
[Membership Category].[Membership Fee], [Membership].[Membership No]

FROM [Membership Category] INNER JOIN [Membership] ON [Membership Category].[Category No]
= [Membership].[Category NO]

ORDER BY [Membership Category].[Category NoJ;

There are examples of SELECT SQL in sections 3.2.4 and 3.4.1.2, and in the Further VBA Trainer.

G.7 UNION

A UNION query is where the results of SELECT queries can be combined. The individual query result
datasets must be compatible with each other. You have seen an example of a query of this type in
section 1.8.2. See also Appendix G.8.

G.8 SELECT for outer join

The example below shows how MS Access generates an outer join SELECT statement. This is the
same as the example in Appendix G.6, but here will select all Membership Categories, even if they do
not have any Members. The worked examples in Part 8 use Outer Joins.

SELECT [Membership Category].[Category No], [Membership Category].[Category Type],
[Membership Category].[Membership Fee], [Membership].[Membership No]

FROM [Membership Category] LEFT JOIN [Membership] ON [Membership Category].[Category No] =
[Membership].[Category No]

ORDER BY [Membership Category].[Category NoJ;

This type of join may not be available in other database software. You will have to code two queries,

then join them via UNION using a NOT IN sub query:

e Query 1 —a normal inner join query, as shown in Appendix G.6.

e Query 2 —a query to list all the category details that are not included in Query 1. A NOT IN sub
query is used to do this.

e Use UNION to join the result of the two queries.

VBA Starting v5-1.doc Page 166 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix G — Overview of SQL

Appendix G — Overview of SQL

The final result is:

A&~ Query 1
SELECT [Membership Category].[Category No], [Membership Category].[Category Type],
[Membership Category].[Membership Fee], [Membership].[Membership No]
FROM [Membership Category], [Membership]

WHERE [Membership Category].[Category No] = [Membership].[Category No]

UNION «—| Query 2 —note
SELECT [Membership Category].[Category No], [Membership Category].[Category Type], | the calculated
[Membership Category].[Membership Fee], “” AS [Membership No] (empty) field for
FROM [Membership Category] Membership No)
WHERE [Membership Category].[Category No] NOT IN NOT IN sub query

(SELECT DISTINCT [Membership Category].[Category No]
FROM [Membership Category], [Membership]
WHERE [Membership Category].[Category No] = [Membership].[Category No])

ORDER BY [Membership Category].[Category NoJ; ¥— SRDER BY for full set of results

The sub query merely lists (provides the set of) Categories that have members (as a normal inner join
will have a result row only where there is a match in both tables). DISTINCT is used (though is not
essential here) to get a unique set of rows. A sub query must have only one column in the result. The
SQL for the sub query is indented so that it shows clearly, but indenting is not essential.

Query 2 then uses the set of categories who do have members to list those categories that are not in
the set by using the NOT IN clause.

G.9 COMMIT

MS Access has a CommitTrans method for use in VBA code when using workspaces. All other
changes are automatically committed (saved) with MS Access.

But when using SQL in other software such as sqlplus you must remember to use this command to
save all changes made. You will then get the response ‘commit complete’.

G.10 GRANT (and REVOKE)
MS Access has its own permissions facility (which | have not explored).

When using sqlplus you must specifically GRANT privileges to other users. You should get the
response ‘grant succeeded’.

G.11 Aliases for tables

SQL can get rather lengthy when table names are used to qualify table fields, but can be simplified
using aliases. The SQL in the OUTER JOIN example in Appendix G.8 can be simplified as follows:

SELECT C.[Category No], C.[Category Type], C.[Membership Fee], M.[Membership No]
FROM [Membership Category] AS C,[Membership] AS M
WHERE C.[Category No] = M.[Category No]
UNION SELECT C.[Category No], C.[Category Type], C.[Membership Fee], “” AS [Membership No]
FROM [Membership Category] AS C
WHERE C.[Category No] NOT IN
(SELECT DISTINCT C.[Category No]
FROM [Membership Category] AS C, [Membership] AS M
WHERE C.[Category No] = M.[Category No])
ORDER BY C.[Category No];

VBA Starting v5-1.doc Page 167 Version 5.1 — July 2005



VBA Trainer -Getting Started Appendix H — Built-in functions
Appendix H — Built-in Functions

This Appendix merely lists, with brief descriptions and examples, some of the various functions that
are built-in to MS Access. References to VBA Help are given for you to find out fuller details, and see
just what the examples given here are doing. Try the examples out using the Debugger to see how
they work. Some of the functions have been used in this Trainer; check the Index for details.

Note that many (if not all?) of these functions can also be used in MS Access queries and SQL. The
type conversion functions are especially useful in query criteria which reference form parameters to
ensure that comparisons are done correctly.

H.1  Date and Time functions
VBA Help keywords: Function; Date, Time, Date and Time
Function Description Example
Date, Now, Returns the system date, date-&- dtToday = Date
Time time, time
DateAdd Returns a given date with a dtDate = DateAdd(“d”,7,dtDate)
specified time-period added to it.
DateDiff Returns an Integer with the intValue = DateDiff(“d”, dtDate1, dtDate2)
required difference between two
dates.
DatePart Returns the specified part of the intWeekNo = DatePart(“ww”,Date)
given date as an Integer
DateValue Returns the given date or time as a | strDate = DateValue(Date)
TimeValue string variant
Day, Hour, Returns an integer that represents intDay = Day(Date)
Minute, the day, hour, etc of the given date. | intYear = Year(Date)
Second, Year,
Month, MonthName gives the month name
MonthName in words (not available in Access 97)
Weekday, Returns the day of the week, or the | intWeekDayNo = Weekday(Date)
WeekdayName | day name in words, of the given
date (WeekdayName was not StrWeekDayName =
available in Access 97). WeekdayName(intWeekDayNo, , vbSunday)
H.2  String functions
VBA Help keywords: function; string.
Function Description Example
Asc, Chr Returns ANSI numeric or string intANSI = Asc(“A”)
value. strANSI = Chr(10)
Format, Formats an expression in strMembNo = Format(intMembKey, “0000")
FormatDateTime, | accordance with the format string strDate = Format(Date, “dd-mmmm-yy”)
FormatCurrency | specified.
InStr Returns a value indicating the IngPos = InStr(“abcdefgh”, “cd”)

position of the first occurrence of
the 2™ string in the 1*' string.

LCase, UCase

Converts to upper or lower case

strUCase = UCase(“aBcD”)
strLCase = LCase(“aBcD”)

Left, Right, Mid

Returns the leftmost, rightmost or
middle characters of a string.

strinitial = Left(Forename, 1)
strChars = Mid(“abcdefghij”, 3, 2)

Ltrim, Rtrim, Trim

Removes leading, trailing, or both
leading and trailing, spaces from a
string

strTrimString =“ abc
strTrimString = Trim(strTrimString)

Len

Returns the number of characters
in a string.

intInitialsCount = Len(Initials)

VBA Starting v5-1.doc

Page 168

Version 5.1 — July 2005




VBA Trainer -Getting Started
Appendix H — Built-in Functions

H.3 Maths functions
VBA Help keyword: Math

Appendix H — Built-in functions

The full set includes various trigonometric and logarithmic functions not listed here.

Function Description Example
Int, Returns a numeric value with the Int(1.5) gives 1
Fix decimal fraction truncated. Fix(1.5) gives 1
Int(-1.5) gives -2
Fix(-1.5)  gives -1
Rnd Returns a random number >= 0 and | Dim MyValue
<1. Randomize
MyValue =
Int((49 * Rnd) + 1)
Sgn Returns the sign of a numeric value | intSign = Sgn(Number)
Greater than zero: 1 (Note — the values returned are different in
Equal to zero: 0 Access 97!)
Less than zero: -1
Sqr Returns the square root of a number. | sgIRoot = Sqr(Number)
There is no function to calculate the | (Error: “invalid procedure call or argument” if
square of a number. Can you work Number is negative)
out why?
Round Rounds a value to a specified curlnterest = Round(curlnterest,2)

number of decimal places

Not available in Access 97.

See also the end of section 1.4.1.

H.4 Financial Functions
VBA Help keyword: Annuity, or Rate of Return, or Balance, or Interest

Function | Description
(taken from VB and VBA in a Nutshell, by Paul Lomax, Published by O’Reilly)
DDB Returns double-declining balance depreciation of an asset for a specific period
FV Returns the future value of an annuity
[pmt Returns the interest payment for a given period of an annuity
IRR Returns the internal rate of return for a given period of an annuity
MIRR Returns the internal rate of return for a series of periodic cash flows
Nper Returns the number of periods for an annuity
NPV Returns the net present value of an investment
Pmt Returns the payment for an annuity
PPmt Returns the principal payment for a given period of an annuity
PV Returns the present value of an annuity
Rate Returns the interest rate per period for an annuity
SLN Returns the straight-line depreciation of an asset for a single period
SYD Returns the sum of years’ digits depreciation on an asset

VBA Starting v5-1.doc Page 169 Version 5.1 — July 2005




VBA Trainer -Getting Started
Appendix H — Built-in Functions

Appendix H — Built-in functions

H.5 Miscellaneous functions
Use each name as the keyword in VBA Help
Function Description Example
IsDate Returns true if the expression can be strTest = “15 Mar 2004”
converted to a date. If IsDate(strTest) Then
MsgBox “It's a date”
End If
IsEmpty Returns TRUE if a variant datatype has boolCheck = IsEmpty(vVar)
not been initialised
IsNull Returns TRUE is an expression If IsNull([Date of Birth]) Then...
evaluates to NULL Note that coding If Fieldname = Null then ... will
not work! See section 3.2.3.2.
IsNumeric Returns TRUE if an expression can be boolCheck = IsNumeric(strVar)
evaluated as a number.
Beep Sounds a note
lif Returns one of two values based on a See page 134 of McBride and section 3.2.3.2.
Boolean expression
MsgBox Returns the user selection of a choice of | intResponse = MsgBox(“Are you sure?”,
buttons vbYesNoCancel)
InputBox Returns user input from a simple dialog strReply = InputBox(“Is anyone there?”)
box
Str Returns a string version of a number strValue = Str(459)
Val Returns the numbers contained in a intValue = Val(“24 57”)
string
Nz Use to convert a Null value in a variant to | Nz(Me![cboFindName], 0)) returns 0 if the value
another value for cboFindName is Null.
H.6  Domain Aggregate functions

VBA Help keywords: Function; Aggregate

A domain is a set of records defined by a table, a query or an SQL expression.

Domain Aggregate functions return statistical information about a specific domain or set of records.
They are the VBA equivalent of an SQL SELECT statement that returns a single value, but are for use
in code. See Sections 3.2.4 and 3.4.1.2 for examples.

If you misspell a table or field name you may get the error message “You cancelled the previous
operation”. Not the most helpful of messages!

Function Description (from Access VBA Help) Example

DAvg Calculates the average of a set of values in a DAvg(“[Membership Fee]”, “Membership
domain Category”)

DCount Determines the number of records in the domain | DCount(“‘[Membership No]”, “Membership”)

DLookup Gets the value of a particular field from the DLookup(“[Lastname]”, “Membership”,

domain

“IMembership No] = 3”)

DFirst, DLast

Returns a random record from a particular field

DFirst("[Lastname]", "Membership",
"[Membership No] = 3")

DMin, DMax | Determines the minimum and maximum values DMax(“[Membership Fee]”, “Membership
in a domain Category”)
DStDev, Estimates the standard deviation across a set of
DStDevP values
DSum Calculates the sum of a set of values in a domain | DSum(“[Stock] * [Unit Price]”, “Stock Levels”)
DVar, DVarP | Estimates variance across a set of values

VBA Starting v5-1.doc

Page 170

Version 5.1 — July 2005




VBA Trainer -Getting Started
Appendix H — Built-in Functions

H.7  Type Conversion functions
Use phrase in VBA Help Answer Wizard: type conversion functions

Appendix H — Built-in functions

Each function forces an expression to a specific datatype, and is used in the format:
FunctionName(expression)

Run-time errors will occur if the expression cannot be converted to the required datatype, so
appropriate validations may need to be done first.

Function Description Example
CBool Returns a Boolean value for the CBool(Weekday(Date()) = vbMonday)
expression. This will return True if today is a Monday,
False otherwise
CByte Returns a single byte value for a Dim byNumber As Byte
number in the range 0-255. byNumber = CByte(InputBox(“Enter number
in range 0-255”))
CCur Returns a value in the range for a Const conValue = “5.6”
currency data type. Dim curValue As Currency
curValue = CCur(conValue)
CDate Converts a date or time expression Const conDate = “15 Jan 2005”
to a date/time data type. Dim dtDate As Date
Const conTime = “16:45”
Dim dtTime As Date
dtDate = Cdate(conDate)
dtTime = Cdate(conTime)
if CDate(txtDate) > Date() then ...
CDbl Converts to a Double datatype.
CDec Converts to a Decimal datatype.
Cint Converts to an Integer datatype. Const conValue = “5.5”
Dim intValue As Integer
intValue = Clint(conValue)
Fractions are rounded.
>= 0.5 is rounded up.
< 0.5 is rounded down.
ClLng Converts to a Long datatype. Fractions are rounded.
CSng Converts to a Single datatype.
CStr Converts to a String Datatype. Dim strResult as String
zfs'g;:{ngepend on the value in strResult = CStr(CBool(Weekday(Date) =
Some examples of possible results vbMonday)) ‘get True” or “False
are shown here; for fuller details see | strResult = CStr(Date()) ‘get system date in
Help. short date format, e.g. “23/10/2004"
CStr(#2/1/2004#) returns “01/02/2004"
CStr(#1 Feb 2004#) returns “01/02/2004"
See also Format function in Appendix H.2.
strResult = CStr (123) *get “123”
Cvar Converts to a Variant datatype.

VBA Starting v5-1.doc

Page 171

Version 5.1 — July 2005




VBA Trainer -Getting Started Appendix | — The forms collection
Appendix | — The Forms Collection

Look at VBA Help with the keywords form; collection. Useful items to read are those entitled:
e Forms Collection
e Form Object

Although the information about this Collection does not appear to be in Access Help, it is worth noting
that Forms Collection references can be used in queries, as shown in section 5.6.

This Collection is extremely useful and used throughout this Trainer (see sections 3.2.4, 3.5, 4.3.8,
5.6 and 6.4 for some examples) and the “Further VBA” Trainer.

You can reference a field or property on an open form from another form, a report or a query by:
forms![form name]![field name] or forms![form name].property
and for sub forms
forms![form name]![sub form name]![field name] or forms![form name]![subform name].property
also
forms![form name]![sub form name1]![sub form name2]![field name] etc

Examples:

e in an assignment statement: variablename = forms![form name]![field name]
e changing a field property: forms![form name]![field name].Visible = False
e changing a form property: forms![form name].Timerinterval = 0

The form name can also be in a variable:

e in an assignment statement: variablename = forms(strFormName)![field name]
e changing a field property: forms(strFormName)![field name].Visible = False
e changing a form property: forms(strFormName).Timerinterval = 0

To reference a page on a form tab control (see Section 7.2) you need to use the page name as well
as the form name:

strStreet = Forms![Membership With tabs]!Street

Forms![Membership with tabs]!PgPersonal.Visible = False

As well as referencing fields on an open form, you can also reference public procedures within a
module on that form.

Suppose you have created a public sub procedure myPublicSub in the code module for your Chelmer
Leisure Main Menu. This can be called from another code module by:
Forms![Chelmer Leisure Main Menu].myPublicSub

The Chelmer Leisure Main Menu form must be open, or this reference will fail at run-time.

If a procedure is to be used as a public procedure, then it would be best to declare it in a separate
Access Module.

VBA Starting v5-1.doc Page 172 Version 5.1 — July 2005



VBA Trainer -Getting Started

Appendix J — Some useful DoCmd methods

Appendix J — Some useful DoCmd Methods

The DoCmd Object has a great many useful methods, with associated actions, some of which have
been used in this Trainer. For full details of each action, and for the list of all DoCmd actions, see
VBA Help with the keyword DoCmd.

The table below has a list of some DoCmd actions, taken from VBA Help. These include actions that
you will see in generated Wizard code, and have seen in various parts of this Trainer.

Code: DoCmd.ActionName....

(then follow the guidance in the code pop-up box and in VBA Help).

ActionName

Brief Description

AddMenu

Create custom or global menu bars or shortcuts.

ApplyFilter

Applies a filter to records for a form. (See also ShowAllRecords action)

CancelEvent

Cancels an event. See Help for list of applicable events.

Close Closes a window. A common use is to close a form.

CopyObiject Copies the specified object to the current or a different, database. Could
be useful for creating backups.

Beep Sounds a Beep.
(Though seems to work on its own, without having to use DoCmd?)

DeleteObject Deletes the specified object.

FindNext Finds the next record that meets the criteria.

FindRecord Finds the first record that meets the criteria.

GoToControl Moves the focus to the specified field or control.

Maximise Maximises the active window. (see also Restore action)

Minimise Minimises the active window. (see also Restore action)

OpenForm Opens the specified form in the required mode, applying an optional filter.

OpenReport Opens the specified report in the required mode, applying an optional
filter.

OpenQuery Runs the specified query.

OutputTo Outputs the data in the specified format, e.g. to an MS Excel spreadsheet.
(See also TransferSpreadsheet).

Quit Exits MS Access.

Requery Updates the data in a specified control by requerying the source of the
control.

Restore Restores a maximised or minimised window to its previous size.

RunSQL Runs SQL for an action or a data definition query.

SendObject Creates an email message where you can send the selected object, or a

message, or both, to specified recipients.

SetWarnings

Turns the display of system messages on/off. See section 6.2.

ShowAlIRecords

Removes any applied filter, e.g. for a form.

ShowToolbar

Displays or hides a built-in toolbar or a custom toolbar.

TransferDatabase Imports, exports or links data between the current database and another
database

TransferSpreadsheet Imports, exports or links data between the current database and a
spreadsheet file.

TransferText Imports, exports or links data between the current database and a text

file.

VBA Starting v5-1.doc

Page 173 Version 5.1 — July 2005




VBA Trainer -Getting Started

Iltem

#, for date and time

&, to concatenate items

_, to continue code over lines

A

Accelerator keys

acDataErrAdded constant
acDataErrContinue constant
acDataErrDisplay constant
acExport property

acForm constant

acFormAdd method

acFormEdit constant
acFormReadOnly constant
aclmport property

acNewRec constant
acViewPreview constant

Adding records

Addltem method

AfterUpdate event, calendar control
AfterUpdate event, combo/list box
AfterUpdate event, form
AfterUpdate event, text box field

Age calculation

Aliases in SQL
AllowEdits form property

ALTER TABLE SQL
ApplyFilter method

Argument
Array
Assignment statement

AutoExpand property, combo box
AutoNumber key on SQL

B
BackColor property

BackStyle property
Backup

BeforeUpdate event, field
BeforeUpdate event, form

Blank record when form opened
Boolean datatype

BorderStyle property
BoundColumn property
Breakpoint, in Debugger
ByRef, parameter

Byte datatype

ByVal, parameter

VBA Starting v5-1.doc

INDEX

Section

Item

See Date/Time C
] 7d13t2%’p29 Calculations, on a form
L 204 Iculations, on a r
351352 Condarconyal
3.5.3,3.5.4,6.3,
6.4.6.5, 66 Call statement
2.6.2,4.3.9,6.3, Cancel, event parameter
7.35
Caption property
497 CASE statement
6.3 CDate function
6.3 Cint Function
7 g? Clear method
.5-6 Click event
222 Close method
4.3.5 CloseCurrentDatabase method
7.3.1 Coding standards
2.6.1 Colour Constants
5.6 Colours, defining your own
2.6.1
3.2.4 Column property
342 322 ColumnCount property
253 34.1.2 Cqumanads property
3223 39232 ColumnWidths _property
3_214‘ 3_3_1: Combo box to find record
3.3.3.1,3.3.3.2, Combo box, add to list at run-time
5.6, 6.4 Combo Box, using
See
myCalculateAge
App G.11 Command button
22.1,23,25.2,
2.6.1,34.2,
35A1p;§§ Command button, hyperlink
351,352, Command button, properties
421, App J Command button, raised/sunken
See parameter Command button, text colour
App F.1.5 Comments in code
1.4.1,3.22.3, COMMIT SQL
5.4, App F.2 Compacting
34.2 Compiling code
6.6 Concatenation
Conditional formatting
Confirmation messages
24.2,32.22, Const declaration
3.4.2
24.2,32.21
7.4 Constant
3.3.1,3.3.31 CONSTRAINT SQL
252,261, Continue code over two or more
3.3.1,3.3.2 lines
2.6.1
2.6.1,3.3.1, Control Tip text
3.3.3.2, S.g.g ControlSource property
3.4.2,3.6.1 Count of records
1.4.3.2 CREATE TABLE SQL
1.7.1, App F.4 CREATE VIEW SQL
1.4.1 Currency datatype
1.7.1, App F.4 Current event, form
Page 174

Index

Section

3.2

5.4

5.6

App F.4
252,331,
3.3.2,3.3.3.1,
55.1,5.8
221,5.2,8.26
1.4.1,1.9.2,
App F.3.2
3.3.2, AppH.7
3.3.3.1, App H.7
3.6.4
1.6,2.2.2,3.5.1,
6.6

425,56, 6.5,
App J

425

App B
241,243
See RGB
function
34.2,36.1,
8.2.7,8.3.2
3.6.1
34.2,36.1
34.2,36.1
3.4.2

6.3

3.4.2,35.2,
3.5.3,3.6,57,
6.4
1.6,2.2.2,2.3,
2.51,286,2.7.2,
3.2.2.3,3.4.1.1,
423

243

244

242

241

1.4.1

App G.9

7.4

14.2

See &
3.2.2.2,84.5
2.6.2,6.2
1.71,2.41,
3.3.3.1,6.5,6.6,
8.1,8.2.6

F.1.2

App G.3
3.3.3.1,4.3.9,
5.7,6.3 ,6.6,
7.35
244,426
3.2.2.1,3.2.2.3,
3.6

3412

6.5, App G.1
App G.5

1.4.1
2.2.3,2.24,23,
2.6.1,3.2.21,
3.2.2.3, 3,2,3,2,
3.24,34.2,
3.6.2,4.3.3,
4.3.8,7.2, App A

Version 5.1 — July 2005



VBA Trainer -Getting Started

Iltem

D

Datamode, when open form
Datatype, creating a table SQL
Datatypes

Date & Time on form, dynamically
Date function

Date/Time datatype

Date/Time functions
DateAdd function

DateDiff function

Date literal values, using in the
Debugger and in code

Date values, calculated, using in
SQL

Day function

DCount function

Debugging code
DELETE SQL

Delete table

Deleting Records
Detail_Format event, report
Detail_Print event, report
Dialog

Dim declaration

Dirty event, form
DISTINCT in SQL statement
DLookup function

Do...Loop

Documenting code

Domain Aggregate Functions
Dot operator, the
DoubleClick event

DROP TABLE SQL
Dropdown combo box property
DSum function

E

Editing data
Email, sending
Enabled property

Err object

Error message, ambiguous name
Error message, can’t assign value
Error message, cancelled prev op
Error message, combo box list
Error message, could not find file
Error message, could not lock table
Error message, data validation

VBA Starting v5-1.doc

INDEX

Section

Item

Error message, DoMenultem

434,437 cancelled
6.5 Error message, duplicate key
App F.1.1 Error message, expected variable
4.2.1 or procedure, not module
1.1.2,3.3.1, Error message, expression with no
421 y 56, value
App H.1 Error message, field Fn doesn'’t
331,355,865, exist in table
6.6, App F.2.2 .
App H.1 Err.c_'r message, file locked for
3.3.1,6, editing .y
App H.1 Error message, invalid procedure
3.2.3.1, App H.1 call or argument
3.2.3.1 Error message, invalid use of Null
Error message, invalid use of Null
6.6 (at end), Error message, MS Access can'’t
8.3.3 find field name
3.2.3.1,8.3.3, Error message, MS Jet not
App H.1 recognise field name or expression
3.4.1.2,3.51, Error message, not a valid path
3.5.6,4.3.9, Error message, object-defined error
4.43,4.4.4,6.4, Error message, sub or function not
6.5, 6.6,8.2.8.1, defined ’
8.4.5, App H.6 E bscriot out of
14.3,3.231, rarrr]cg);remessage, subscript out o
6.5, 6.6, 7,3?43, Error message, when saving
8.2.9,8.3.3, Error wizard code, amending
8.4.5 Errors, in coding
See DROP Errors, in embedded SQL
TABLE SQL Error-trapping
262 Event-based programming
58 Events, order of
53,58 Exit Do/For
56 Exit Sub
141, 658265 Explicit, compiler option
274 Export to spreadsheet
3.5.2
3.2.4,4.4.4, E
4.4.6, 845, Filter on DoCmd.OpenForm
App H.6 Filter property
6.5, App F.3.3 FilterOn property
1.8, App D
3.2.4, App H.6 Filters, applying
113 Filters, combining
36.34, 827, Filters, removing
' 839 Financial functions
6.5 Flag, programming technique
3.6.2,834
3.7.2, App H.6 FontBold property
FontBold property
Fontltalic property
23 For...Next loop
113, ':Zp: ForeColor property
3'3'3'153%_%?1’ Form Current event
252,34.11 Form properties
App C Form, change size at run-time
3.2.21
6.6,7.2, App H.6 Format function
gg FormatDateTime function
7.3.
6.5
3.3.1
Page 175

Index

Section
2.5.2

8.2.8.2
1.4

5.5
7.3.6
7.3.6

App H.3

3.23.2,7.3.6
3.23.2,73.5
8.4.3

8.4.3

7.3.6
App C
1.4.3.3, App C

App F.1.5

2.5

252

App C

6.6

See On Error
1.1.4, App A
1.1.4

3.7.8, App F.3.3
1.6,25.2,6.5
1.2, AppC
7.35

4.3.9
3.5.1,357
3.5.1,3.5.6,
3.5.7

3.5
3.5.7,3.7.5
3.5.6, App J
App H.4
2.6.1,3.3.3.2,
5.5.2

3.2.2.2

5.3

5.3

3.7.8, 6.6,
App F.3.3
24.1,24.3,2.5,
2.6.1,5.3

See Current
event, form
422

See InsideWidth
property
7.3.5, App H.2
5.6, 8.4.5,
App H.2

Version 5.1 — July 2005



VBA Trainer -Getting Started

Iltem

Forms Collection

Formula

Formula, in code
Function

G
Global

Glossary

GotFocus event
GoToRecord method
GRANT SQL
Greying-out

H

Heading on form/reports
Help, Access and VBA
Hidden field (textbox) on form

Hidden column, in list box
Highlighting item on form
Highlighting item on report

|
IF statement

IIF function
Immediate window, in Debugger
Import from spreadsheet

Index, for table
Infinite loop
InputBox function

INSERT SQL

InsideWidth form property
Int function

IsDate function

IsMissing function

IsNull function

IsNumeric function

L
Label, in code
Len function

LimitToList property
Linking tables

List box, using
ListWidth property

ListRows property
Literal

VBA Starting v5-1.doc

INDEX

Section

3.24,35.2,
3.5.3,35.5,
4.3.8,4.3.9,5.6,
5.7,6.4,8.46.2,
App C, App |
See
ControlSource
3.2.23

See Procedure

Lottery Numbers
1.7.1,2.6.1,6.4, M
6.6, App F.1. Maths functions
13 MDE files
34.2,3.5.1 Membership Category form
26.1 Membership form
App G.10
See Enabled
221 Message boxes, separate lines in
13 Method
4.3.8,8.4.6.1, Mid function
8.4.6.3
3.6.1,8.2.4 Miscellaneous functions
3.222 Modules: Form, Report and Access
53 Month function
MsgBox function
322 ;'43'12’ ;Z MultiRow property, tab control
5.:,;’ App C: MultiUser access '
App F.3.2 myCalculateAge function
3.2.3.2,82.5, myCalcYears function
8.3.1, App H.5
14.32,1.71, myBooking sub
3.2.31 myCheckReorder level sub
7.3.2,7.3.3, myCheckSlot
7.3.4 myCompareValues function
8.2.8.2 myCreateDatetable sub
App F.3.3
173,732, myShowMemberCount sub
App H.5, H.7 myDisplaylnfoMessage sub
6.3, 6.5, 6.6,
6.7.1, 8.3.3,
8.3.5, ADFZ‘C;-‘; myDisplayWarningMessage sub
3.3.3.1, App H.3
3.3.1, App H.5
1.7.1 myHiddenFields sub
3.2.3.2,3.3.1, mylmportData sub
3.3.3.1, 8.4.6, mylsAlphabetic function
App H.5 myResetButtonsToOff sub
3.3.3.1, App H.5 mySetToViewMode sub
myUpdateFee function
myUSADate function
1.6 myYesNoQuestion function
3.5.1,3.7.8,
App H.2
3.5.2,3.5.3,
3.6.1,5.7,6.3, N
6.4 Naming conventions
751,753 NoData event, on report
3'6'863'51’ 8823‘2 NotInList event, combo box
3'4.2: 3.6.1 Now function
3.6.1 Null
App F.2.2
Page 176

Item

Load event, form

Local

Locals window, in Debugger
Locked property
LostFocus event

Index

Section

221,261,
421,56, 6.4,
6.5

1.2,1.4.1,
1.4.3.3, 1.6,
App F.1.3
1.4.3.2
3.221,3.4.2
3.4.2

6.5

App H.3

7.6.2
1.6,1.9.3,6.4
21,24.2,24.3,
2.4.4,25.3,
2.6.4,3.23.2,
3.4.2,35.1,
43.2,443,7.2
See vbCrLf
1.1.3
3.5.1,3.7.8, App
H.2

App H.5
1.1.1,1.2,1.4A1,
3.2.3.1
3.2.3.1,8.3.3,
App H.1

1.7, App H.5
7.2

754

3.2.3
3.7.3,5.2,5.3,
5.5

8.4.6.3
3.2.2.2,3.2.2.3
8.4.6.1

3.3.3.2
8.3.3,8.3.4,
8.4.3
3.4.1.2,35
1.7,2.5.3,2.6.2,
7.3.2,8.2.8.1,
8.2.9

1.9.1, 25, 3.3.1,
3.3.2,3.3.3.1,
5.5.1,8.2.8.1,
8.2.8.2,8.35
8.4.6.1

7.3.2
3.5.1,3.7.8
241,25
224,25
141,15
8.3.3,8.3.5
1.7.2,25.2,
26.2,6.3,7,3,5,
8.2.9,845

App E

5.5

6.3

4.2.1, App H.1
3.2.2.3,3.2.3.2,
324,444,586,
see also IsNull

Version 5.1 — July 2005



VBA Trainer -Getting Started

Iltem

Numeric datatype

Nz function

o
On Error, code in event

Open event, report
OpenForm method

OpenQuery method
OpenReport method
Option Compare Database
Option Explicit

Optional parameter
OrderBy property
OrderByOn property

P
Pagelndex property
Parameter

Print event, report header
Private

Procedure: Sub and Function
Prompts when coding
Property

Public

Q

Query, action
Query, Crosstab

Query, data definition
Query, Outer Join

Quit method

Quotation marks in string

R
Randomize

RecordSource property
Removeltem method
Repaint method
Requery method

REVOKE SQL

RGB function

Rnd function

Round function
RowSource property
RowSourceType property
RunSQL method

S

Saving automatically
Saving records
Scope

SetWarnings method

VBA Starting v5-1.doc

INDEX
Section Iltem
3.5.3,64, 6.6, SELECT SQL
App F2.2
3.4.2, App H.5
SetFocus method
1.6,2.5.1,25.2,
7.3.6,8.2.8.2, . .
84.4 Sorting and Grouping, report
52,54,57 SpecialEffect property
434,437, Splitting a database
4.3.9, App J SQL
1.6 Startup options
5.6, App J Step through code, in Debugger
1.2 stLinkCriteria variable, on
1.2 DoCmd.OpenForm
1.7.1, App F.4 Stock form
5.7 Str function
5.7 String datatype
72 String functions
141,174, Sub
8.2.6,8.2.7, Sub Query
8.4.6.1, App F.4
5.4 T
1.1.2,1.2, Tab controls on forms
A 1-4':-3‘1-24 Temporary table, using
1_1_2’FX’pp Fa Test Plans and Notes
141
1.1.3 Text field
1.1.2,1.71,
241,242, Textbox
3.2.3.1, 8.1 Timer event
App F.1.4 TimerlInterval property
TransferSpreadsheet method
Transparent property
6.2 Type conversion functions
8.4.1,84.3,
844,845 u
6.2 = .
8.2.3,8.3.4 UCase function
4.2.5 Undo
3.5.1,35.2,6.3, UNION SQL
6.4,6.5,6.6 Unique property
UPDATE SQL
See Rnd
function v L
3.2.4,56 Validations
36.4 Value property, calendar control
113,193 Variable
36.2,3.6.3.2 Variant datatype
8.2.6,8.2.7,
8.3.5,845
App G.10 VBA language
241 vbBlack constant
12? 223 Eg vbBlue constant
3.4.2,3.6.1,6.5 vbCrLf constant
3.6.1,6.5
6,8, App J vbinformation constant
vbLongDate constant
vbNo constant
3223 vbQuestion constant
2.5 vbRed constant
App F.1.3
6.2,8 vbSunday constant
Page 177

Index

Section

3.2.4,6.5,

App G.6,

App G.8
1.1.3,1.9.3,
2.23,26.1,
3.3.2,4.2.3,6 .4,
7.2,8.2.8.1

5.7
24.2,322.1
7.5

6,7.3.2, App G
424,761
1.4.3.2
4.3.4,43.9

2.7.3,3.21
3.4.2, App H.5
1.7.1,3.51,
3.5.2,6.3,6.5,
6.6, App F2.2
App H.2

See Procedure
8.4.3

7.2

6.5

1432, 2.1,
3.2.3,3.3.3.2,
5.3

See String
datatype
3223

421

421

7.3, App J
243,244
App H.7

3.5.2,3.7.8,
App H.2
25.2,36.35
1.8.2, App G.7
8.2.8.2
6.4,6.7.2,7.3.2

3.3

5.6

App F.1.2
3.2.2.3,
App F.1.1,
App H.5
1.3

See Colour
Constants
See Colour
Constants
2.6.2,6.3,6.6,
8.4.5

1.71

5.6
6.3,6.6
1.7.2,6.6
See Colour
Constants
421

Version 5.1 — July 2005



VBA Trainer -Getting Started

Iltem

vbWhite constant

vbYesNo constant
Viewing data via a form
Visible property

w

Watch window, in Debugger
Weekday function

Weekday, sort in day of week order
WeekdayName function
While...Wend loop

Wildcard

With

Wizard code

Wizard code, calling

Y
Year function

Yes/No datatype

VBA Starting v5-1.doc

INDEX

Section

See Colour
Constants
1.7.2,6.6
2.2
2.4.4,4.3.8,
552,72

1.4.3.2

4.2.1, App H.1
8.3.1

4.2.1, App H.1
App F.3.3

3.5.1
77,826,827
16,252
26.1,3.223

3.2.3.1,3.3.31,
8.3.3. App F.1.5,
App H.1
3.54,6.6

Page 178

Index

Version 5.1 — July 2005



	Page
	PART 1 – BASICS
	1
	PART 2 – USING EVENT CODE ON FORMS – DATA MAINTENANCE
	Page

	PART 3 – USING EVENT CODE ON FORMS – MISCELLANEOUS FEATURES
	36
	PART 4 – USING EVENT CODE ON FORMS - MENUS
	4.1
	Introduction
	69
	4.2
	Creating and using a Main Menu
	69
	4.2.1
	Starting a menu – dynamic date & time, day of week
	69
	4.2.2
	Improve the menu appearance
	70
	Page

	4.2.3
	Command button to load a form
	71
	4.2.4
	Open menu automatically on start-up
	71
	4.2.5
	Exiting the application
	71
	4.2.6
	Control tips
	72
	4.2.7
	Accelerator keys
	72
	4.3
	Data Maintenance via a Sub Menu
	72
	4.3.1
	Create a sub menu
	72
	4.3.2
	Exiting from the sub menu
	73
	4.3.3.
	Amend Membership form
	73
	4.3.3
	Editing Membership records
	73
	4.3.5
	Viewing Membership records
	74
	4.3.6
	Adding new Membership records
	74
	4.3.7
	Deleting existing Membership records
	74
	4.3.8
	Try this
	74
	4.3.9
	Opening the form with a particular record
	75
	4.4
	Exercises
	75
	4.4.1
	‘Are You Sure?’ procedure on exit
	75
	4.4.2
	Sub Menu buttons for Renew Membership and Change Address
	75
	4.4.3
	Show count of records added
	76
	4.4.4
	Open SubMembership form for a particular member number
	76
	4.4.5
	Provide data maintenance facilities for Stock via a sub menu
	76
	4.4.6
	Using a system heading in a table
	76

	PART 5 – USING EVENT CODE ON REPORTS
	Page

	Procedure “A named sequence of statements executed as a unit. For example, Function, Property, and Sub are types of procedures. A procedure name is always defined at module level. All executable code must be contained in a procedure. Procedures can't be nested within other procedures.” Extract from Access 2002 help.
	The . (dot) operator
	 The code module is empty initially apart from two standard lines at the start, which should always be there as defaults. Once you have set the options they will apply to all new code modules created, but will not apply to existing code; you will have to code them manually in existing code modules.                                                                                                                                                        
	Fig 1.2.2 Code Module Window
	Fig 1.4.1 Code for myUpdateFee Function

	A CASE statement is simply another way of coding IF … ELSE …      (See Appendix F.3.2)
	1.4.2 Compiling your code
	1.4.3 Debugging your code
	Fig 1.5.1 Check Update Fees query, using myUpdateFee function


	2.2.1 Setting a form default
	2.2.2 Using a View Command Button
	2.2.3 Setting a default for each new record
	2.2.4 Using a common procedure
	Fig 2.2.4 Use of new procedure to set to view mode

	2.4 Showing which is the active button
	Fig 2.4.1 Membership form code so far, showing colour change for Edit & View buttons

	Property
	Tab
	Setting
	Result
	Example of use
	Enabled
	Data
	Yes
	Button click is actioned
	Normal button use
	No
	Button is ‘greyed out’ and click is not actioned. Cannot give the focus to the button in VBA code
	To show the button on the form, but prevent the user from using it (perhaps until a data value has been validated). See section 3.3.3.1.
	Visible
	Format
	Yes
	Button is shown on form
	User can see the button
	No
	Button is not shown on form and click on area where it should be is not actioned. Cannot give the focus to the button in VBA code
	To hide the button to prevent user from both seeing & using it. See section 4.3.
	Transparent
	Format
	Yes
	Button is not shown on form but click on area where it should be is actioned if Enabled = Yes
	Buttons on a map or diagram – user clicks on features of map or diagram, but user does not see the actual button. See section 3.2.2.1.
	No
	Button is shown on form
	User can see the button
	Control Tip text
	Other
	Enter own text
	Text shows up when cursor is positioned over the object.
	Help tips. See section 4.2.6.
	2.6.1 Add a New Record
	2.6.2 Delete an Existing Record
	3.2.3 Showing the Member’s Age on the Membership Form
	Test No
	Birth Date
	Reason for test
	System date
	Expected result
	1
	1 Mar 1970
	Date with month before current month
	11th Aug 2004.
	34
	2
	1 Nov 1970
	Date after current month, same year as test 1.
	As above
	33
	3
	10 Aug 1970
	Boundary test – birthday was yesterday
	As above
	34
	4
	11 Aug 1970
	Boundary test – birthday is today
	As above
	34
	5
	12 Aug 1970
	Boundary test – birthday is tomorrow
	As above
	33
	6
	31 Dec 1969
	Last day of year
	As above
	34
	7
	1 Jan 1970
	First day of year, 1 day after test 6. Age same as test 6
	As above
	34
	8
	2 Feb 1994
	Boundary tests with leap year system date.
	29th Feb 2004
	10
	9
	29 Feb 1992
	Boundary test with leap year birthday.
	28 Feb 2003
	10
	Figure 3.2.7 Code and test plan for function myCalculateAge.
	Use the Debug Immediate Window (section 1.4.3.2) to test this out: ?myCalculateAge (#1 Mar 1970#)              
	3.2.3.2 Showing the Age on the Form
	3.3.1 Field Validations
	Fig 3.3.5 Validating the date of birth, and a test plan.

	3.3.2 Form validations
	Fig 3.4.2 Common procedure to count records for the form
	To call the procedure to count all the records, simply code
	3.4.2 Looking for a Particular Record
	PART 4 – USING EVENT CODE ON FORMS – MENUS
	4.1 Introduction
	4.3.1 Create a sub menu
	4.3.2 Exiting from the sub menu
	4.3.3 Amend Membership form
	4.3.4 Editing Membership records
	4.3.5 Viewing Membership records
	4.3.6 Adding new Membership records

	5.3 Changing the appearance of a field at run-time
	Fig 5.3.1 Code to change the font at run-time, and suggested test plan.

	5.4 Calculating and printing totals 
	Not all report counts have to be coded; Access Help has very clear instructions on the standard counting facilities that exist for creating report and group totals. See Access Help with the keywords report; total, also McBride Unit 24. You will often need to count a selection of items in a report (e.g. the total of lapsed members above), and it is often best to code these totals; it may not always be possible to do them via the standard Access facilities.
	Fig 5.4.1 Report showing highlighted dates, plus counts


	Event

