Introduction to Mobile Robots

Dr. Mario Gongora
mgongora@dmu.ac.uk
http://www.cse.dmu.ac.uk/~mgongora/
Control Models
The Control Cycle

- A fundamental methodology derived in the early days of robotics from engineering principles is the *sense-think-act* cycle.
 - the principle is to continuously attempt to minimise the error between the actual state and the desired state.
 - based on control theory.

```
sense -> compute (think) -> act
```
Control Architectures

- A variety of different approaches have been tried for implementing the *sense-think-act* control cycle.
- These approaches can be categorised as:
 - model-based
 - reactive
 - hybrid
Model Based

- A symbolic internal ‘world-model’ is maintained
 - the sub-tasks are decomposed into functional layers
 - similar to ‘classical’ artificial intelligence approach
Problems with Models

- An **adequate, accurate and up-to-date** model must be maintained at all times
 - this is very difficult in practice!
 - what if sensors detect an object that hasn’t been defined
- A **model-based system** is **extremely brittle**
 - if one of the functional layers fails (e.g. hardware problems, software bugs), then the whole system fails
- **Significant processing power** is required
 - maintaining the model takes time, so slow responses!?
- Despite much effort, **little progress** was made!
Reactive Robotics
Reactive Controllers

- In order to try to overcome the shortcomings of model-based robots, modern approaches have centred predominantly on simple *reactive* systems with minimal amounts of computation.
 - ‘model-free systems’

- More correctly, the models are *simple* and *implicit*.
 - The systems do not use symbolic models but, for example, a rule-set which tells a robot how to react to a corner when following a wall may be considered to be a simple, implicit model fragment.
 - It implicitly encodes assumptions about the environment.
Behaviour Based

- The control system is broken down into horizontal modules, or *behaviours*, that run in parallel
 - each behaviour has direct access to sensor readings and can control the robot’s motors directly

```
sense

identify objects
build maps
explore
wander
avoid objects

act
```
Behaviour Advantages

- It supports multiple goals and is more efficient
 - there is no functional hierarchy between layers
 - one layer does not call another layer
 - each layer can work on different goals in parallel
 - communication between layers is achieved via message passing which need not be synchronised
- The system is easier to design, debug and extend
 - each module can be designed and tested individually
- The system is robust
 - if one module fails, e.g. wander, then other layers, e.g. avoid obstacles, still function and behave correctly
Behaviour Limitations

- It is extremely difficult to implement plans in pure form a behaviour-based robot has no memory (not even an internal state memory) and so is unable to follow an externally specified sequences of actions.

- It can be very hard to predict how a large number of multiple behaviours may interact.
 - *Emergent behaviour* is the term given to unexpected behaviour that comes about through these interactions sometimes it is useful, sometimes it is not!

- The robot can get trapped in a *limit cycle* trapped in a dead-end, repeatedly turning left then right.
Other Approaches
Other Reactive Approaches

- Two other reactive approaches that are popular
- Potential field methods
 - a potential field is a concept from physics
 - e.g. the *gravitational field*
 - you do not need to be told which way to fall
 - planets do not need to plan how to move around the sun
 - obstacles exert hypothetical repulsive forces on the robot
- Motor schema navigation
 - multiple, concurrent schema generate separate behaviours
 which are summed to produce output
 - schema are dynamically created/destroyed as needed
Hybrid Approaches

- The **SSS** three-layer architecture
 - the *servo-subsumption-symbolic* architecture combines Brooks’ architecture with a lower-level servo control level and a higher-level symbolic system [Connell]
 - It provides a neat way to combine the advantages of each architecture:
 - Quick response of servo
 - Robust response of reactive (subsumption)
 - Planning capabilities of model based (symbolic)
Learning Approaches

- Traditional learning techniques
 - rather than attempt to predefine and predict a symbolic model of the ‘real-world’, the robot learns how to operate and how to behave

- Evolutionary algorithms
 - using genetic algorithms to find good network weights
 - significant problems with evolving real solutions in reasonable time on current mobile robot hardware
Introduction to Sensors
Robot Sensors

- Sensors are devices that can sense and measure physical properties of the environment,
 - e.g. temperature, luminance, weight, size, etc.
- They deliver *low-level* information about the environment the robot is working in
- This information is
 - noisy (imprecise) and even contradictory and ambiguous
- Sensors and Detectors are similar but **NOT** equal
Sensor Characteristics

- All sensors are characterised by a number of properties that describe their capabilities
 - Sensitivity: \((\text{change of output}) \div (\text{change of input})\)
 - Linearity: constancy of \((\text{output} \div \text{input})\)
 - Measurement range: difference between min. and max.
 - Response time: time required for a change in input to cause a change in the output
 - Accuracy: difference between measured & actual
 - Repeatability: difference between repeated measures
 - Resolution: smallest observable increment
 - Bandwidth: range of frequencies it can respond to
Sensor Types

- It is impossible for us not to view the world in a human-centric manner, but this is not absolute:
 - vision is our main sense, as the human brain is dominated by a large visual cortex
 - the dog brain is dominated by an olfactory cortex, with 125 to 220 million smell-sensitive receptors in the olfactory bulb
 - cockroaches have 30,000 wind-sensitive hairs on legs

- There are many different types of sensor
 - many sense phenomena that humans cannot detect
 - e.g. magnetism, infra-red, ultra-violet, ultrasound, phase of light (e.g. polarised sun-glasses), etc.
Active vs. Passive

- Sensors can be broadly classified as either
 - *active*
 - radiating some form of energy into the environment
 - e.g.
 - radar (radio direction and ranging)
 - sonar (sound navigation and ranging)
 - lidar (light direction and ranging)
 - *passive*
 - relying on energy emitted by various objects in environment

- It is tempting to imagine that passive sensors do not interfere with the environment
 - *ANY sensor may affect the environment*
Internal State vs. External State

- The variable that a Sensors reads can provide information either
 - About the internal state of the Robot
 - Internal variables, e.g. battery level
 - Self measurements, e.g. odometry
 - Time
 - About the external environment
 - External variables, e.g. outside temperature
 - Position relative to external objects, e.g. obstacles
 - Communications
Non-Visual Sensors
Proximity Sensors

- Tactile sensors allow obstacle detection but proximity sensors are needed for true obstacle avoidance.

- Several technologies can detect the presence of particular fields without mechanical contact:
 - Magnetic reed switches:
 - Two thin magnetic strips of opposite polarity not quite touching.
 - An external magnetic field closes the strip & makes contact.
 - Hall effect sensors:
 - Small voltage generated across a conductor carrying current.
 - Inductive sensors, capacitive sensors:
 - Inductive sensors can detect presence of metallic objects.
 - Capacitive sensors can detect metallic or dielectric materials.
Infrared Sensors

- Infrared sensors are probably the simplest type of non-contact sensor
 - widely used in mobile robotics to avoid obstacles

- They work by
 - emitting infrared light, (to differentiate emitted IR from ambient IR - e.g. lights, sun, etc.- , a code is added)
 - detecting any reflections off nearby surfaces

- In certain environments, with careful calibration, IR sensors can be used for object distance
 - requires uniform surface colours and structures
Sonar Sensors

- The fundamental principle of robot sonar sensors is the same as that used by bats
 - emit a chirp (e.g. 1.2 milliseconds)
 - a short powerful pulse of a range of frequencies of sound
 - its reflection off nearby surfaces is detected
- As the speed of sound in air is known (~ 330 m·s⁻¹) the distance to the object can be computed from the elapsed time between chirp and echo
 - minimum distance = 165 t_{chirp} (e.g. 21 cm at 1.2 ms)
 - maximum distance = 165 t_{wait} (e.g. 165 m at 1 s)
- Usually referred to as *ultrasonic* sensors
Visual Sensors
Visual Sensors

- Visual sensors are based on light. They consist of two main components:
 - An optical system
 - An optoelectrical system
Visual Sensors

- A digital image is a collection of samples representing the visual content of the environment.
- Each individual sample is represented in the form of a pixel or picture element. Each pixel is a point on rectangular lattice with finite resolution encoding some form of intensity.
- For the image to look unbroken (continues) a minimum number of samples should be taken. The minimum sampling frequency is known as the Nyquist frequency:
 - The signal should be sampled ‘at a rate at least twice as great as the highest frequency in the signal’
Stereoscopic Vision

- Viewing the world with two cameras (eyes) allows a three-dimensional representation to be formed
 - unfortunately the signal is complex and noisy
- Each camera receives a slightly different view
 - the distance between corresponding points in an image is known as the *stereo disparity*
Object Recognition

- Much research has gone into the field of object recognition (it seems so easy for us humans!), but the problem has not been solved yet
 - it seems humans use a combination of techniques

- Edge detection
 - fairly simple filter operations can detect clean edges
 - e.g. the discrete Laplace filter
 - reliable detection of all edges is much more difficult

- Area based techniques
 - connected regions of similar colour, texture or brightness probably belong to the same object
Actuators

Locomotion
Mobility Considerations

- Issues impact selection of drive
 - manoeuvrability: ability to alter direction/speed
 - controllability: practical and not too complex
 - traction: sufficient to minimise slippage
 - climbing ability: traversal of minor discontinuities, slope rate, surface type, terrain
Mobility Considerations

- **stability**
 - mustn't fall over!

- **efficiency**
 - power consumption reasonable

- **maintenance**
 - easy to maintain, reliable

- **environmental impact**
 - does not do damage

- **navigation**
 - accuracy of dead-reckoning
Legs

- Two legs seems the most familiar configuration
 - But balance is an incredibly difficult problem
 - Need very fast and supple joints to move and balance
 - Standing still is an active task (uses energy!!)
- Four legs are much easier to balance and move … are they?
- Six legs are much easier to balance and move
 - Stable when not moving
 - Can work with simple cams and rigid legs
 - Processing is much simpler!
Wheels

- Again, any number of wheels is possible
 - there are many different configurations that are useful
- Two individually driven wheels on either side
 - usually with one or more *idler wheels* for balance
 - independently driven wheels allows zero *turning radius*
 - one wheel drives forwards, one wheel drives backwards
- Rear wheel drive, with front wheel steering
 - the vehicle will have a non-zero turning radius
 - for two front wheels, turning geometry is complex
 - the rear wheels need a *differential* to prevent slippage
- 4WD is possible, but it is even more complex
Exotic Wheels and Tracks

- Tracks can be used in the same way as 2 wheels
 - good for rough terrain (as compared to wheels)
 - tracks must slip to enable turns (*skid steering*)
- In *synchro drive* three or more wheels are coupled
 - drive in same direction at same rate
 - pivot in unison about their respective steering axes
 - allows body of robot to remain in the same orientation
- Tri-star wheels are composed of 3 *sub-wheels*
 - entire wheel assembly rolls over a large obstacle
- There are many other exotic wheel configurations
 - multiple-degrees-of-freedom (MDOF), e.g. Kilough
Wheels and Tracks

If \(v_L = -v_R \):
\[
\Delta P_0 = \{
\begin{align*}
|\Delta P_0| &= 0; \\
\Delta P_0 \to &= |v_L \Delta t| / R\omega;
\end{align*}
\}
\]

If \(v_L \neq v_R \) and \(\Delta t \) is small:
\[
\Delta P_0 = \{
\begin{align*}
|\Delta P_0| &= |v_L + v_R|/2 \cdot \Delta t; \\
\Delta P_0 \to &= (|v_L - v_R|/2 \cdot \Delta t) / R\omega;
\end{align*}
\}

Exotic Wheels and Tracks
Actuator Types

- Electric
 - DC motor is most common type used in mobile robots
 - stepper motors turn a certain amount with a voltage pulse

- Pneumatic
 - operate by pumping compressed air through chambers: slow.

- Hydraulic
 - pump pressurised oil: usually too heavy, dirty and expensive to be used on mobile robots

- Shape memory alloys (SMA’s)
 - metallic alloys that deform under heat and then return to their previous shape: *used for artificial muscles*
Arms and Grippers

- Degrees-of-freedom
 - independently controllable components of motion

- Arms
 - convenient method to allow full movement in 3D
 - more often used in fixed robots due to power & weight
 - even more difficult to control!
 - due to extra degrees of freedom

- Grippers
 - may be very simple (two rigid arms) to pick up objects
 - may be complex device with fingers on end of an arm
 - probably need feedback to control grip force
 - e.g. picking up an egg!
Measuring Motion
Odometry

- If wheels are being used, then distance traveled can be calculated by measuring number of turns
 - *dead-reckoning* or *odometry* is the name given to the direct measure of distance (for navigation)
- Motor speed and timing are very inaccurate
 - measuring the number of wheel rotations is better
 - *shaft encoders*, or *rotation sensors*, measure this
- Can be used in Mobile Robots as well as Manipulators
Odometry

- There are many different types and technologies of shaft encoder
 - Optical encoders (relative)
 - Potentiometers (absolute for each turn)
- In practice, slippage means that dead-reckoning is unreliable over all but very short distances
- And is a relative measurement at the end, so...