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Abstract

In the real world, it is not uncommon to face an optimization problem with more than
three objectives. Such problems, called many-objective optimization problems (MaOPs),
pose great challenges to the area of evolutionary computation. The failure of convention-
al Pareto-based multi-objective evolutionary algorithms in dealing with MaOPs motivates
various new approaches. However, in contrast to the rapid development of algorithm de-
sign, performance investigation and comparison of algorithms have received little attention.
Several test problem suites which were designed for multi-objective optimization have still
been dominantly used in many-objective optimization. In this competition, we carefully
selects/designs 15 test problems with diverse properties, aiming to promote the research
of evolutionary many-objective optimization (EMaO) via suggesting a set of test problems
with a good representation of various real-world scenarios. Also, an open-source software
platform with a user-friendly GUI is provided to facilitate the experimental execution and
data observation.

1 Introduction

The field of evolutionary multi-objective optimization has developed rapidly over the last
two decades, but the design of effective algorithms for addressing problems with more than
three objectives (called many-objective optimization problems, MaOPs) remains a great
challenge. First, the ineffectiveness of the Pareto dominance relation, which is the most
important criterion in multi-objective optimization, results in the underperformance of tra-
ditional Pareto-based algorithms. Also, the aggravation of the conflict between convergence
and diversity, along with increasing time or space requirement as well as parameter sensitivi-
ty, has become key barriers to the design of effective many-objective optimization algorithms.
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Furthermore, the infeasibility of solutions’ direct observation can lead to serious difficulties
in algorithms’ performance investigation and comparison. All of these suggest the press-
ing need of new methodologies designed for dealing with MaOPs, new performance metrics
and benchmark functions tailored for experimental and comparative studies of evolutionary
many-objective optimization (EMaO) algorithms.

Benchmark functions play an important role in understanding the strengths and weak-
nesses of evolutionary algorithms. In many-objective optimization, several scalable con-
tinuous benchmark function suites, such as DTLZ [1] and WFG [2], have been commonly
used. Recently, researchers have also designed/presented some problem suites specially for
many-objective optimization [3, 4, 5, 6, 7, 8]. However, all of these problem suites only
represent one or several aspects of real-world scenarios. A set of benchmark functions with
diverse properties for a systematic study of EMaO algorithms are not available in the area.
On the other hand, existing benchmark functions typically have a “regular” Pareto front,
overemphasize one specific property in a problem suite, or have some properties that appear
rarely in real-world problems [9]. For example, the Pareto front of most of the DTLZ and
WFG functions is similar to a simplex. This may be preferred by decomposition-based al-
gorithms which often use a set of uniformly-distributed weight vectors in a simplex to guide
the search. This simplex-like shape of Pareto front also causes an unusual property that any
subset of all objectives of the problem can reach optimality [10, 9]. This property can be very
problematic in the context of objective reduction, since the Pareto front degenerates into
only one point when omitting one objective [10]. Also for the DTLZ and WFG functions,
there is no function having a convex Pareto front; however, a convex Pareto front may bring
more difficulty (than a concave Pareto front) for decomposition-based algorithms in terms
of solutions’ uniformity maintenance [11]. In addition, the DTLZ and WFG functions which
are used as MaOPs with a degenerate Pareto front (i.e., DTLZ5, DTLZ6 and WFG3) have
a nondegenerate part of the Pareto front when the number of objectives is larger than four
[2, 12, 13]. This naturally affects the performance investigation of evolutionary algorithms
on degenerate MaOPs.

This report carefully selects/designs 15 benchmark functions with diverse properties
which cover a good representation of various real-world scenarios, such as being multimodal,
disconnected, degenerate, and/or nonseparable, and having an irregular Pareto front shape,
a complex Pareto set or a large number of decision variables (as summarized in Table 1). Our
aim is to promote the research of evolutionary many-objective optimization via suggesting
a set of benchmark functions with a good representation of various real-world scenarios.
Also, an open-source software platform with a user-friendly GUI is provided to facilitate
the experimental execution and data observation. In the following, Section 2 details the
definitions of the 15 benchmark functions, and Section 3 presents the experimental setup for
the competition, including general settings, performance indicators, and software platform.
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Table 1: Main properties of the 15 test functions.
Problem Properties Note

MaF1 Linear No single optimal solution in
any subset of objectives

MaF2 Concave No single optimal solution in
any subset of objectives

MaF3 Convex, Multimodal

MaF4 Concave, Multimodal Badly-scaled and no single
optimal solution in any sub-
set of objectives

MaF5 Convex, Biased Badly-scaled

MaF6 Concave, Degenerate

MaF7 Mixed, Disconnected, Multi-
modal

MaF8 Linear, Degenerate

MaF9 Linear, Degenerate Pareto optimal solutions are
similar to their image in the
objective space

MaF10 Mixed, Biased

MaF11 Convex, Disconnected, Non-
separable

MaF12 Concave, Nonseparable, Bi-
ased Deceptive

MaF13 Concave, Unimodal, Non-
separable, Degenerate

Complex Pareto set

MaF14 Linear, Partially separable,
Large scale

Non-uniform correlations
between decision variables
and objective functions

MaF15 Convex, Partially separable,
Large scale

Non-uniform correlations
between decision variables
and objective functions
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2 Function Definitions

• D: number of decision variables

• M : number of objectives

• x = (x1, x2, ..., xD): decision vector

• fi: i-th objective function

2.1 MaF1 (Modified inverted DTLZ1 [14])
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Figure 1: The Pareto front of MaF1 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = (1− x1...xM−1)(1 + g(xM ))

f2(x) = (1− x1...(1− xM−1))(1 + g(xM ))

...

fM−1(x) = (1− x1(1− x2))(1 + g(xM ))

fM (x) = x1(1 + g(xM ))

(1)

with

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (2)

where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 1, this test problem has an
inverted PF, while the PS is relatively simple. This test problem is used to assess whether
EMaO algorithms are capable of dealing with inverted PFs. Parameter settings of this test
problem are: x ∈ [0, 1]D and K = 10.

2.2 MaF2 (DTLZ2BZ [10])

min



f1(x) = cos(θ1)... cos(θ2) cos(θM−1)(1 + g1(xM ))

f2(x) = cos(θ1)... cos(θM−2) sin(θM−1)(1 + g2(xM ))

...

fM−1(x) = cos(θ1) sin(θ2)(1 + gM−1(xM ))

fM (x) = sin(θ1)(1 + gM (xM ))

(3)
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Figure 2: The Pareto front of MaF2 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

with

gi(xM ) =

M+i·⌊D−M+1
M ⌋−1∑

j=M+(i−1)·⌊D−M+1
M ⌋

((
xj

2
+

1

4
)− 0.5)2 for i = 1, . . . ,M − 1

gM (xM ) =
n∑

j=M+(i−1)·⌊D−M+1
M ⌋

((
xj

2
+

1

4
)− 0.5)2

θi =
π

2
· (xi

2
+

1

4
) for i = 1, . . . ,M − 1

(4)

where the number of decision variable is D = M + K − 1, and K denotes the size of
xM , namely, K = |xM |, with xM = (xM , ..., xD). This test problem is modified from
DTLZ2 to increase the difficulty of convergence. In original DTLZ2, it is very likely that the
convergence can be achieved once the g(xM ) = 0 is satisfied; by contrast, for this modified
version, all the objective have to be optimized simultaneously in order to reach the true PF.
Therefore, this test problem is used to assess the whether and MOEA is able to perform
concurrent convergence on different objectives. Parameter settings are: x ∈ [0, 1]D and
K = 10.

2.3 MaF3 (Convex DTLZ3 [15])
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Figure 3: The Pareto front of MaF3 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.
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min



f1(x) = [cos(
π

2
x1)... cos(

π

2
xM−2) cos(

π

2
xM−1)(1 + g(xM ))]4

f2(x) = [cos(
π

2
x1)... cos(

π

2
xM−2) sin(

π

2
xM−1)(1 + g(xM ))]4

...

fM−1(x) = [cos(
π

2
x1) sin(

π

2
x2)(1 + g(xM ))]4

fM (x) = [sin(
π

2
x1)(1 + g(xM ))]2

(5)

with

g(xM ) = 100[|xM |+
|x|∑

i=M

(xi − 0.5)2 − cos(20π(xi − 0.5))] (6)

where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 3, this test problem has
a convex PF, and there a large number of local fronts. This test problem is mainly used
to assess whether EMaO algorithms are capable of dealing with convex PFs. Parameter
settings of this test problem are: x ∈ [0, 1]D, K = 10.

2.4 MaF4 (Inverted badly-scaled DTLZ3)
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Figure 4: The Pareto front of MaF4 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = a× (1− cos(
π

2
x1)... cos(

π

2
xM−2) cos(

π

2
xM−1))(1 + g(xM ))

f2(x) = a2 × (1− cos(
π

2
x1)... cos(

π

2
xM−2) sin(

π

2
xM−1))(1 + g(xM ))

...

fM−1(x) = aM−1 × (1− cos(
π

2
x1) sin(

π

2
x2))(1 + g(xM ))

fM (x) = aM × (1− sin(
π

2
x1))× (1 + g(xM ))

(7)

with

g(xM ) = 100[|xM |+
|x|∑

i=M

(xi − 0.5)2 − cos(20π(xi − 0.5))] (8)

where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). Parameter settings are a = 2. Besides, the
fitness landscape of this test problem is highly multimodal, containing a number of (3k − 1)
local Pareto-optimal fronts. This test problem is used to assess whether EMaO algorithms
are capable of dealing with badly-scaled PFs, especially when the fitness landscape is highly
multimodal. Parameter settings of this test problem are: x ∈ [0, 1]n, K = 10 and a = 2.
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2.5 MaF5 (Convex badly-scaled DTLZ4)
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Figure 5: The Pareto front of MaF5 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = aM × [cos(
π

2
x1

α)... cos(
π

2
xα
M−2) cos(

π

2
xα
M−1)(1 + g(xM ))]4

f2(x) = aM−1 × [cos(
π

2
x1

α)... cos(
π

2
xα
M−2) sin(

π

2
xα
M−1)(1 + g(xM ))]4

...

fM−1(x) = a2 × [cos(
π

2
xα
1 ) sin(

π

2
xα
2 )(1 + g(xM ))]4

fM (x) = a× [sin(
π

2
x1

α)(1 + g(xM ))]4

(9)

with

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (10)

where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 5, this test problem has a
badly-scaled PF, where each objective function is scaled to a substantially different range.
Besides, the PS of this test problem has a highly biased distribution, where the majority of
Pareto optimal solutions are crowded in a small subregion. This test problem is used to assess
whether EMaO algorithms are capable of dealing with badly-scaled PFs/PSs. Parameter
settings of this test problem are: x ∈ [0, 1]D, α = 100 and a = 2.

2.6 MaF6 (DTLZ5(I,M) [16])

min



f1(x) = cos(θ1)... cos(θM−2) cos(θM−1)(1 + 100g(xM ))

f2(x) = cos(θ1)... cos(θM−2) sin(θM−1)(1 + 100g(xM ))

...

fM−1(x) = cos(θ1) sin(θ2)(1 + 100g(xM ))

fM (x) = sin(θ1)(1 + 100g(xM ))

(11)

with

θi =

{ π
2xi for i = 1, 2, ..., I − 1

1
4(1+g(xM )) (1 + 2g(xM )xi) for i = I, ...,M − 1

(12)

g(xM ) =

|x|∑
i=M

(xi − 0.5)2 (13)
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Figure 6: The Pareto front of MaF6 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 6, this test problem has a
degenerate PF whose dimensionality is defined using parameter I. In other words, the PF
of this test problem is always an I-dimensional manifold regardless of the specific number
of decision variables. This test problem is used to assess whether EMaO algorithms are
capable of dealing with degenerate PFs. Parameter settings are: x ∈ [0, 1]D, I = 2 and
K = 10.

2.7 MaF7 (DTLZ7 [1])
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Figure 7: The Pareto front of MaF7 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = x1

f2(x) = x2

...

fM−1(x) = xM−1

fM (x) = h(f1, f2, . . . , fM−1, g)× (1 + g(xM ))

(14)

with 
g(xM ) = 1 +

9

|xM |

|x|∑
i=M

xi

h(f1, f2, . . . , fM−1, g) = M −
M−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))]

(15)
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where the number of decision variable is D = M +K − 1, and K denotes the size of xM ,
namely, K = |xM |, with xM = (xM , ..., xD). As shown in Fig. 7, this test problem has a
disconnected PF where the number of disconnected segments is 2M−1. This test problem
is used to assess whether EMaO algorithms are capable of dealing with disconnected PFs,
especially when the number of disconnected segments is large in high-dimensional objective
space. Parameter settings are: x ∈ [0, 1]n and K = 20.

2.8 MaF8 (Multi-Point Distance Minimization Problem [3, 4])

-1 -0.5 0 0.5 1
x

1

-1

-0.5

0

0.5

1

x
2

3-objective MaF8

-1 -0.5 0 0.5 1
x

1

-1

-0.5

0

0.5

1

x
2

10-objective MaF8

Figure 8: The Pareto front of MaF8 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

This function considers a two-dimensional decision space. As its name suggests, for any
point x = (x1, x2) MaF8 calculates the Euclidean distance from x to a set of M target
points (A1, A2, ..., AM ) of a given polygon. The goal of the problem is to optimize these M
distance values simultaneously. It can be formulated as

min


f1(x) = d(x, A1)

f2(x) = d(x, A2)

...

fM (x) = d(x, AM )

(16)

where d(x, Ai) denotes the Euclidean distance from point x to point Ai.
One important characteristic of MaF8 is its Pareto optimal region in the decision space

is typically a 2D manifold (regardless of the dimensionality of its objective vectors). This
naturally allows a direct observation of the search behavior of EMaO algorithms, e.g., the
convergence of their population to the Pareto optimal solutions and the coverage of the
population over the optimal region.

In the competition, the regular polygon is used (in order to unify with MaF9). The center
coordinates of the regular polygon (i.e., Pareto optimal region) are (0, 0) and the radius of
the polygon (i.e., the distance of the vertexes to the center) is 1.0. Parameter settings are:
x ∈ [−10 000, 10 000]2. Fig. 8 shows the Pareto optimal regions of the 3-objective and
10-objective MaF8.

2.9 MaF9 (Multi-Line Distance Minimization Problem [17])

This function considers a two-dimensional decision space. For any point x = (x1, x2), MaF9
calculates the Euclidean distance from x to a set of M target straight lines, each of which
passes through an edge of the given regular polygon with M vertexes (A1, A2, ..., AM ), where
M ≥ 3. The goal of MaF9 is to optimize these M distance values simultaneously. It can be
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formulated as

min


f1(x) = d(x,

←−−→
A1A2)

f2(x) = d(x,
←−−→
A2A3)

...

fM (x) = d(x,
←−−→
AMA1)

(17)

where
←−→
AiAj is the target line passing through vertexes Ai and Aj of the regular polygon,

and d(x,
←−→
AiAj) denotes the Euclidean distance from point x to line

←−→
AiAj .

One key characteristic of MaF9 is that the points in the regular polygon (including the
boundaries) and their objective images are similar in the sense of Euclidean geometry [17]. In
other words, the ratio of the distance between any two points in the polygon to the distance
between their corresponding objective vectors is a constant. This allows a straightforward
understanding of the distribution of the objective vector set (e.g., its uniformity and coverage
over the Pareto front) via observing the solution set in the two-dimensional decision space.
In addition, for MaF9 with an even number of objectives (M = 2k where k ≥ 2), there exist
k pairs of parallel target lines. Any point (outside the regular polygon) residing between a
pair of parallel target lines is dominated by only a line segment parallel to these two lines.
This property can pose a great challenge for EMaO algorithms which use Pareto dominance
as the sole selection criterion in terms of convergence, typically leading to their populations
trapped between these parallel lines [6].
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Figure 9: The Pareto front of MaF9 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

For MaF9, all points inside the polygon are the Pareto optimal solutions. Howev-
er, these points may not be the sole Pareto optimal solutions of the problem. If two
target lines intersect outside the regular polygon, there exist some areas whose points
are nondominated with the interior points of the polygon. Apparently, such areas exist
in the problem with five or more objectives in view of the convexity of the considered
polygon. However, the geometric similarity holds only for the points inside the regu-
lar polygon. The Pareto optimal solutions that are located outside the polygon will af-
fect this similarity property. So, we set some regions infeasible in the search space of
the problem. Formally, consider an M -objective MaF9 with a regular polygon of ver-

texes (A1, A2, ..., AM ). For any two target lines
←−−−→
Ai−1Ai and

←−−−−→
AnAn+1 (without loss of

generality, assuming i < n) that intersect one point (O) outside the considered regu-
lar polygon, we can construct a polygon (denoted as ΦAi−1AiAnAn+1) bounded by a set

of 2(n − i) + 2 line segments: AiA′
n, A

′
nA

′
n−1, ..., A

′
i+1A

′
i, A

′
iAn, AnAn−1, ..., Ai+1Ai, where

points A′
i, A

′
i+1, ..., A

′
n−1, A

′
n are symmetric points of Ai, Ai+1, ...An−1, An with respect to

central point O. We constrain the search space of the problem outside such polygons (but
not including the boundary). Now the points inside the regular polygon are the sole Pareto
optimal solutions of the problem. In the implementation of the test problem, for newly-
produced individuals which are located in the constrained areas of the problem, we simply
reproduce them within the given search space until they are feasible.
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In the competition, the center coordinates of the regular polygon (i.e., Pareto optimal
region) are (0, 0) and the radius of the polygon (i.e., the distance of the vertexes to the
center) is 1.0. Parameter settings are: x ∈ [−10 000, 10 000]2. Fig. 9 shows the Pareto
optimal regions of the 3-objective and 10-objective MaF9.

2.10 MaF10 (WFG1 [2])
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Figure 10: The Pareto front of MaF10 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = yM + 2(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− cos(

π

2
yM−1))

f2(x) = yM + 4(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− sin(

π

2
yM−1))

...

fM−1(x) = yM + 2(M − 1)(1− cos(
π

2
y1))(1− sin(

π

2
y2))

fM (x) = yM + 2M(1− y1 −
cos(10πy1 + π/2)

10π
)

(18)

with
zi =

xi

2i
for i = 1, . . . , D (19)

t1i =

{
zi, if i = 1, . . . ,K

|zi−0.35|
|⌊0.35−zi⌋|+0.35 , if i = K + 1, . . . , D

(20)

t2i =

{
t1i , if i = 1, . . . ,K

0.8 +
0.8(0.75−t1i )min(0,⌊t1i−0.75⌋)

0.75 − (1−0.8)(t1i−0.85)min(0,⌊0.85−t1i ⌋)
1−0.85 , if i = K + 1, . . . , D

(21)

t3i = t2i
0.02

for i = 1, . . . , D (22)

t4i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
2jt3j∑iK/(M−1)

j=(i−1)K/(M−1)+1
2j

, if i = 1, . . . ,M − 1∑D
j=K+1 2jt3j∑D
j=K+1 2j

, if i = M
(23)

yi =

{
(t4i − 0.5)max(1, t4M ) + 0.5, if i = 1, . . . ,M − 1

t4M , if i = M
(24)

where the number of decision variable is D = K+L, with K denoting the number of position
variables and L denoting the number of distance variables. As shown in Fig. 10, this test
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problem has a scaled PF containing both convex and concave segments. Besides, there are a
lot of transformation functions correlating the decision variables and the objective functions.
This test problem is used to assess whether EMaO algorithms are capable of dealing with
PFs of complicated mixed geometries. Parameter settings are: x ∈

∏D
i=1[0, 2i], K = M − 1,

and L = 10.

2.11 MaF11 (WFG2 [2])
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Figure 11: The Pareto front of MaF11 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = yM + 2(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− cos(

π

2
yM−1))

f2(x) = yM + 4(1− cos(
π

2
y1))...(1− cos(

π

2
yM−2))(1− sin(

π

2
yM−1))

...

fM−1(x) = yM + 2(M − 1)(1− cos(
π

2
y1))(1− sin(

π

2
y2))

fM (x) = yM + 2M(1− y1 cos
2(5πy1))

(25)

with
zi =

xi

2i
for i = 1, . . . , D (26)

t1i =

{
zi, if i = 1, . . . ,K

|zi−0.35|
|⌊0.35−zi⌋|+0.35 , if i = K + 1, . . . , D

(27)

t2i =

{
t1i , if i = 1, . . . ,K

t1K+2(i−K)−1 + t1K+2(i−K) + 2|t1K+2(i−K)−1 − t1K+2(i−K)|, if i = K + 1, . . . , (D +K)/2

(28)

t3i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
t2j

K/(M−1) , if i = 1, . . . ,M − 1∑(D+K)/2
j=K+1 t2j
(D−K)/2 , if i = M

(29)

yi =

{
(t3i − 0.5)max(1, t3M ) + 0.5, if i = 1, . . . ,M − 1

t3M , if i = M
(30)

where the number of decision variable is n = K+L, with K denoting the number of position
variables and L denoting the number of distance variables. As shown in Fig. 11, this test
problem has a scaled disconnected PF. This test problem is used to assess whether EMaO
algorithms are capable of dealing with scaled disconnected PFs. Parameter settings are:
x ∈

∏D
i=1[0, 2i], K = M − 1, and L = 10.
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2.12 MaF12 (WFG9 [2])
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Figure 12: The Pareto front of MaF12 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = yM + 2 sin(
π

2
y1)... sin(

π

2
yM−2) sin(

π

2
yM−1)

f2(x) = yM + 4 sin(
π

2
y1)... sin(

π

2
yM−2) cos(

π

2
yM−1)

...

fM−1(x) = yM + 2(M − 1) sin(
π

2
y1) cos(

π

2
y2)

fM (x) = yM + 2M cos(
π

2
y1)

(31)

with
zi =

xi

2i
for i = 1, . . . , D (32)

t1i =

z
0.02+(50−0.02)(0.98/49.98−(1−2

∑n
j=i+1 zj

D−i )|⌊0.5−
∑D

j=i+1 zj

D−i ⌋+0.98/49.98|)
i , if i = 1, . . . , D − 1

zi, if i = D

(33)

t2i =

{
1 + (|t1i − 0.35| − 0.001)(

349.95⌊t1i−0.349⌋
0.349 +

649.95⌊0.351−t1i ⌋
0.649 + 1000), if i = 1, . . . ,K

1
97 (1 + cos[122π(0.5− |t1i−0.35|

2(⌊0.35−t1i ⌋+0.35)
)] + 380(

|t1i−0.35|
2(⌊0.35−t1i ⌋+0.35)

)2), if i = K + 1, . . . , D

(34)

t3i =


∑iK/(M−1)

j=(i−1)K/(M−1)+1
(t2j+

∑K/(M−1)−2
k=0 |t2j−t2p|)

⌈K/(M−1)/2⌉(1+2K/(M−1)−2⌈K/(M−1)/2⌉) , if i = 1, . . . ,M − 1∑D
j=K+1(t

2
j+

∑D−K−2
k=0 |t2j−t2q|)

⌈(D−K)/2⌉(1+2(D−K)−2⌈(D−K)/2⌉) , if i = M
(35)

yi =

{
(t3i − 0.5)max(1, t3M ) + 0.5, if i = 1, . . . ,M − 1

t3M , if i = M
(36)

{
p = (i− 1)K/(M − 1) + 1 + (j − (i− 1)K/(M − 1) + k)mod(K/(M − 1))

q = K + 1 + (j −K + k)mod(n−K)
(37)

where the number of decision variable is D = K + L, with K denoting the number of
position variable and L denoting the number of distance variable. As shown in Fig. 12, this
test problem has a scaled concave PF. Although the PF of this test problem is simple, its
decision variables are nonseparably reduced, and its fitness landscape is highly multimodal.
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This test problem is used to assess whether EMaO algorithms are capable of dealing with
scaled concave PFs together with complicated fitness landscapes. Parameter settings are:
x ∈

∏D
i=1[0, 2i], K = M − 1, and L = 10.

2.13 MaF13 (PF7 [5])
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Figure 13: The Pareto front of MaF13 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = sin(
π

2
x1) +

2

|J1|
∑
j∈J1

y2j

f2(x) = cos(
π

2
x1) sin(

π

2
x2) +

2

|J2|
∑
j∈J2

y2j

f3(x) = cos(
π

2
x1) cos(

π

2
x2) +

2

|J3|
∑
j∈J3

y2j

f4,...,M (x) = f1(x)
2 + f2(x)

10 + f3(x)
10 +

2

|J4|
∑
j∈J4

y2j

(38)

with

yi = xi − 2x2 sin(2πx1 +
iπ

n
) for i = 1, . . . , D (39)


J1 = {j|3 ≤ j ≤ D, and j mod 3 = 1}
J2 = {j|3 ≤ j ≤ D, and j mod 3 = 2}
J3 = {j|3 ≤ j ≤ D, and j mod 3 = 0}
J4 = {j|4 ≤ j ≤ D}

(40)

where the number of decision variable is D = 5. As shown in Fig. 13, this test problem
has a concave PF; in fact, the PF of this problem is always a unit sphere regardless of the
number of objectives. Although this test problem has a simple PF, its decision variables
are nonlinearly linked with the first and second decision variables, thus leading to difficulty
in convergence. This test problem is used to assess whether EMaO algorithms are capable
of dealing with degenerate PFs and complicated variable linkages. Parameter setting is:
x ∈ [0, 1]2 × [−2, 2]D−2.
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Figure 14: The Pareto front of MaF14 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

2.14 MaF14 (LSMOP3 [8])

min



f1(x) = xf
1 ...x

f
M−1(1 +

M∑
j=1

c1,j × ḡ1(x
s
j))

f2(x) = xf
1 ...(1− xf

M−1)(1 +
M∑
j=1

c2,j × ḡ2(x
s
j))

...

fM−1(x) = xf
1 (1− xf

2 )(1 +
M∑
j=1

cM−1,j × ḡM−1(x
s
j))

fM (x) = (1− xf
1 )(1 +

M∑
j=1

cM,j × ḡM (xs
j))

x ∈ [0, 10]|x|

(41)

with

ci,j =

{
1, if i = j

0, otherwise
(42)



ḡ2k−1(x
s
i ) =

1

Nk

Nk∑
j=1

η1(x
s
i,j)

|xs
i,j |

ḡ2k(x
s
i ) =

1

Nk

Nk∑
j=1

η2(x
s
i,j)

|xs
i,j |

k = 1, ..., ⌈M
2
⌉

(43)


η1(x) =

|x|∑
i=1

(x2
i − 10 cos(2πxi) + 10)

η2(x) =

|x|−1∑
i=1

[100(x2
i − xi+1)

2 + (xi − 1)2]

(44)

xs ← (1 +
i

|xs|
)× (xs

i − li)− xf
1 × (ui − li)

i = 1, ..., |xs|
(45)
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where Nk denotes the number of variable subcomponent in each variable group xs
i with

i = 1, ...,M , and ui and li are the upper and lower boundaries of the i-th decision variable
in xs. Although this test problem has a simple linear PF, its fitness landscape is complicated.
First, the decision variables are non-uniformly correlated with different objectives; second,
the decision variables have mixed separability, i.e., some of the are separable while others
are not. This test problem is mainly used to assess whether EMaO algorithms are capable
of dealing with complicated fitness landscape with mixed variable separability, especially in
large-scale cases. Parameter settings are: Nk = 2 and D = 20×M .

2.15 MaF15 (Inverted LSMOP8 [8])

0
00

0.2

0.4

f 3

3-objective MaF15

0.6

f
1

f
2

0.5 0.5

0.8

1

1 1

Figure 15: The Pareto front of MaF15 with 3 and 10 objectives, shown by Cartesian coordinates
and parallel coordinates respectively.

min



f1(x) = (1− cos(
π

2
xf
1 )... cos(

π

2
xf
M−2) cos(

π

2
xf
M−1))× (1 +

M∑
j=1

c1,j × ḡ1(x
s
j))

f2(x) = (1− cos(
π

2
xf
1 )... cos(

π

2
xf
M−2) sin(

π

2
xf
M−1))× (1 +

M∑
j=1

c2,j × ḡ2(x
s
j))

...

fM−1(x) = (1− cos(
π

2
xf
1 ) sin(

π

2
xf
2 ))× (1 +

M∑
j=1

cM−1,j × ḡM−1(x
s
j))

fM (x) = (1− sin(
π

2
xf
1 ))× (1 +

M∑
j=1

cM,j ḡM (xs
j))

x ∈ [0, 1]|x|

(46)
with

ci,j =

{
1, if j = i or j = i+ 1

0, otherwise
(47)



ḡ2k−1(x
s
i ) =

1

Nk

Nk∑
j=1

η1(x
s
i,j)

|xs
i,j |

ḡ2k(x
s
i ) =

1

Nk

Nk∑
j=1

η2(x
s
i,j)

|xs
i,j |

k = 1, ..., ⌈M
2
⌉

(48)
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η1(x) =

|x|∑
i=1

x2
i

4000
−

|x|∏
i=1

cos(
xi√
i
) + 1

η2(x) =

|x|∑
i=1

(xi)
2}.

(49)

xs ← (1 + cos(0.5π
i

|xs|
))× (xs

i − li)− xf
1 × (ui − li)

i = 1, ..., |xs|
(50)

where Nk denotes the number of variable subcomponent in each variable group xs
i with

i = 1, ...,M , and ui and li are the upper and lower boundaries of the i-th decision variable in
xs. Although this test problem has a simple convex PF, its fitness landscape is complicated.
First, the decision variables are non-uniformly correlated with different objectives; second,
the decision variables have mixed separability, i.e., some of the are separable while others
are not. Different from MaF14, this test problem has non-linear (instead of linear) variable
linkages on the PS, which further increases the difficulty. This test problem is mainly used to
assess whether EMaO algorithms are capable of dealing with complicated fitness landscape
with mixed variable separability, especially in large-scale cases. Parameter settings are:
Nk = 2 and D = 20×M .

3 Experimental Setup

3.1 General Settings

• Number of Objectives (M): 5, 10, 15

• Maximum Population Size1: 25×M

• Maximum Number of Fitness Evaluations (FEs)2: max{100000, 10000×D}
• Number of Independent Runs: 31

3.2 Performance Metrics

• Inverted Generational Distance (IGD): Let P ∗ be a set of uniformly distributed
points on the Pareto front. Let P be an approximation to the Pareto front. The
inverted generational distance between P ∗ and P can be defined as:

IGD(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗|
, (51)

where d(v, P ) is the minimum Euclidean distance from point v to set P . The IGD
metric is able to measure both diversity and convergence of P if |P ∗| is large enough,
and a smaller IGD value indicates a better performance. In this competition, we use
a number of 10000 uniformly distributed reference points sampled on the true Pareto
front3 for each test instance.

• Hypervolume (HV): Let y∗ = (y∗1 , ..., y
∗
m) be a reference point in the objective space

that is dominated by all Pareto optimal solutions. Let P be the approximation to the
Pareto front. The HV value of P (with regard to y∗) is the volume of the region which
is dominated by P and dominates y∗. In this competition, the objective vectors in P

are normalized using f j
i =

fj
i

1.1×ynadir
i

, where f j
i is the i-th dimension of j-th objective

1The size of final population/archive must be smaller the given maximum population size, otherwise, a com-
pulsory truncation will be operated in final statistics for fair comparisons.

2Regardless of the number of objectives, every evaluation of the whole objective set is counted as one FE.
3The specific number of reference points for IGD calculations can vary a bit due to the different geometries of

the Pareto fronts. All reference point sets can be automatically generated using the software platform introduced
in Section 3.3.
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vector, and ynadiri is the i-th dimension of nadir point of the true Pareto front4. Then
we use y* = (1,...,1) as the reference point for the normalized objective vectors in the
HV calculation.

3.3 Software Platform

All the benchmark functions have been implemented in MATLAB code and embedded in a
recently developed software platform – PlatEMO5. PlatEMO is an open source MATLAB-
based platform for evolutionary multi- and many-objective optimization, which currently
includes more than 50 representative algorithms and more than 100 benchmark functions,
along with a variety of widely used performance indicators. Moreover, PlatEMO provides
a user-friendly graphical user interface (GUI), which enables users to easily perform exper-
imental settings and algorithmic configurations, and obtain statistical experimental results
by one-click operation.

Figure 16: The GUI in PlatEMO for this competition.

In particular, as shown in Fig. 16, we have tailored a new GUI in PlatEMO for this
competition, such that participants are able to directly obtain tables and figures comprising
the statistical experimental results for the competition. To conduct the experiments, the
only thing to be done by participants is to write the candidate algorithms in MATLAB and
embed them into PlatEMO. The detailed introduction to PlatEMO regarding how to embed
new algorithms can be referred to the users manual attached in the source code of PlatEMO
[18]. Once a new algorithm is embedded in PlatEMO, the user will be able to select the new
algorithm and execute it on the GUI shown in Fig. 16. Then the statistical results will be
displayed in the figures and tables on the GUI, and the corresponding experimental result
(i.e. final population and its performance indicator values) of each run will be saved to a
.mat file. Participants of this competition are asked to send all the saved .mat
files together with the figures and tables generated by the system to Ran Cheng
via ranchengcn@gmail.com.
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