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A Consensus Model for Group Decision Making
with Incomplete Fuzzy Preference Relations

E. Herrera-Viedma, S. Alonso, F. Chiclana, and F. Herrera

Abstract— Two processes are necessary to solve group decision
making problems: a consensus process and a selection process.
The consensus reaching process is necessary to obtain a final
solution with a certain level of agreement between the experts;
and the selection process is necessary to obtain such a final
solution. In [19], we present a selection process to deal with
group decision making problems with incomplete fuzzy prefe-
rence relations, which uses consistency measures to estimate the
incomplete fuzzy preference relations. In this paper we present
a consensus model. The main novelty of this consensus model is
that of being guided by both consensus and consistency measures.
Also, the consensus reaching process is guided automatically,
without moderator, through both consensus and consistency
criteria. To do that, a feedback mechanism is developed to
generate advice on how experts should change or complete their
preferences in order to reach a solution with high consensus
and consistency degrees. In each consensus round, experts are
given information on how to change their preferences, and
to estimate missing values if their corresponding preference
relation is incomplete. Additionally, a consensus and consistency
based induced ordered weighted averaging operator to aggregate
the experts’ preferences is introduced, which can be used in
consensus models as well as in selection processes. The main
improvements of this consensus model is that it supports the
management of incomplete information and it allows to achieve
consistent solutions with a great level of agreement.

Index Terms— Group Decision Making, Fuzzy Preference Re-
lations, Consensus, Aggregation.

I. INTRODUCTION

Group decision making (GDM) problems consist in finding
the best alternative(s) from a set of feasible alternatives X =
{x1, ..., xn} according to the preferences provided by a group
of experts E = {e1, ..., em}. Due to their apparent merits when
aggregating experts’ preferences into group preferences [20],
[22], [38], we assume that experts provide fuzzy preference
relations [6], [14], [22], [26], [32], [36].

A difficulty that has to be addressed when dealing with
real GDM problems is the lack of information. Indeed, there
may be cases where an expert would not be able to efficiently
express any kind of preference degree between two or more
of the available options. This may be due to an expert not
possessing a precise or sufficient level of knowledge of part
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of the problem, or because that expert is unable to discriminate
the degree to which some options are better than others.
Experts in these situations would rather not guess those
preference degrees and as a consequence they might provide
incomplete information [1], [9], [19], [27], [28], [40].

Usually, GDM problems are faced by applying two different
processes before a final solution can be given [5], [16],
[18], [24]: 1) the consensus process and 2) the selection
process. The consensus process refers to how to obtain the
maximum degree of consensus or agreement between the set
of experts. Usually, the consensus process is guided by a
human figure called moderator [16], [23], [24]. The selection
process obtains the final solution according to the preferences
given by the experts. It involves two different steps [17],
[33]: aggregation of individual preferences and exploitation
of the collective preference. Clearly, it is preferable that the
experts had achieved a high level of consensus concerning
their preferences before applying the selection process.

In [1], [19] we introduce a selection process to deal with the
GDM problems with incomplete fuzzy preference relations.
In this selection process we present a consistency based
procedure which is able to estimate all missing values from the
known preferences. In this paper, we focus on the consensus
process. In the literature, we can find many approaches to
model the consensus processes in GDM [3]–[5], [7], [10],
[11], [16], [18], [23]–[25], [29], [35], [37], [46]. Most of these
approaches use only consensus measures to control and guide
the consensus process. If a consensus process is seen as a
type of persuasion model [8], then other criteria could be
used to guide the consensus reaching processes as it could
be, for example, the cooperation or consistency criterion. A
first approach to consensus using a consistency criterion can
be found in [12], although preference relations were assumed
to be complete. Also, in the context of the analytical hierarchy
process (AHP) [34], consistency has been used in GDM [2],
[39].

The aim of this paper is to present a consensus model for
GDM problems with incomplete fuzzy preference relations.
This consensus model will not only be based on consensus
measures but also on consistency measures. As in [16], we
use two kinds of consensus measures to guide the consensus
reaching processes, consensus degrees (to evaluate the agree-
ment of all the experts) and proximity degrees (to evaluate the
agreement between the experts’ individual preferences and the
group preference). To compute them, firstly, all missing values
of the incomplete fuzzy preference relations are estimated
using the consistency based estimation procedure presented in
[19]. Afterwards, some consistency measures for each expert
are computed. Both consensus measures and consistency mea-
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Fig. 1. Consensus Model for GDM with Incomplete Information

sures are used to design a feedback mechanism that generates
advice to the experts on how they should change and complete
their fuzzy preference relations to obtain a solution with a
high consensus degree (making experts’ opinions closer), but
also maintaining a certain consistency level on their fuzzy pre-
ference relations (avoiding self contradiction). This feedback
mechanism is able to substitute the actions of the moderator.
Figure 1 depicts this consensus model. The experts provide
their preferences by means of incomplete fuzzy preference
relations. After the fuzzy preference relations are completed,
the system computes consistency and consensus measures. If
they satisfy a condition based on a consensus and consistency
threshold value, then the selection process to obtain the final
solution of the problem is applied; otherwise, the system
will generate advice to the experts to help them make their
opinions closer, more consistent and complete. Additionally,
we also introduce an Induced Ordered Weighted Averaging
(IOWA) operator [31], [42]–[44] to aggregate the experts’
preferences in the whole decision process which uses both
consensus and consistency criteria as inducing variable. The
main novelty of this consensus model is that it supports the
management of incomplete information allowing to achieve
consistent solutions with a high consensus degree.

This paper is set out as follows. Section II deals with
the preliminaries necessary to develop our consensus model.
Section III introduces the consensus model for GDM problems
with incomplete fuzzy preference relations. Finally, in Sec-
tion IV we draw our conclusions.

II. PRELIMINARIES

In this section, we briefly present the tools necessary to
design the consensus model, that is, the concept of incom-
plete fuzzy preference relation, consistency measures, and the
consistency based procedure to estimate missing values.

A. Incomplete Fuzzy Preference Relations

Among the different representation formats that experts may
use to express their opinions, fuzzy preference relations [6],
[14], [22], [26], [32], [36] are one of the most used because of
their effectiveness as a tool for modelling decision processes
and their utility and easiness of use when we want to aggregate
experts’ preferences into group ones [20], [22], [38].

Definition 1: A fuzzy preference relation P on a set of
alternatives X is a fuzzy set on the product set X ×X , i.e.,
it is characterized by a membership function µP : X×X −→
[0, 1].

When cardinality of X is small, the preference relation may
be conveniently represented by the n × n matrix P = (pik),
being pik = µP (xi, xk) (∀i, k ∈ {1, . . . , n}) interpreted as the
preference degree or intensity of the alternative xi over xk:
pik = 1/2 indicates indifference between xi and xk (xi ∼ xk),
pik = 1 indicates that xi is absolutely preferred to xk, and
pik > 1/2 indicates that xi is preferred to xk (xi � xk). Based
on this interpretation we have that pii = 1/2 ∀i ∈ {1, . . . , n}
(xi ∼ xi).

It has been common practice in research to model GDM
problems in which all the experts are able to provide all the
required preference values, that is, to provide all pik values.
This situation is not always possible to achieve. Experts could
have some difficulties in giving all their preferences due to lack
of knowledge about part of the problem, or simply because
they may not be able to quantify some of their degrees of
preference. In order to model such situations, we define the
concept of an incomplete fuzzy preference relation [19].

Definition 2: A function f : X −→ Y is partial when not
every element in the set X necessarily maps onto an element
in the set Y . When every element from the set X maps onto
one element of the set Y then we have a total function.

Definition 3: An incomplete fuzzy preference relation P on
a set of alternatives X is a fuzzy set on the product set X×X
that is characterized by a partial membership function.

B. Consistency Measures

In real GDM problems with fuzzy preference relations some
properties about the preferences expressed by the experts are
usually assumed desirable to avoid contradictions in their
opinions, that is, to avoid inconsistent opinions. One of these
properties is the transitivity property, which represents the
idea that the preference value obtained by directly comparing
two alternatives should be equal to or greater than the pre-
ference value between those two alternatives obtained using
an indirect chain of alternatives. There are several possible
characterizations for the transitivity property (see [20]). In this
paper, we make use of the additive transitivity property. The
mathematical formulation of the additive transitivity was given
by Tanino in [38]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n}
(1)

The underlying concept on which the additive transitivity
property is based has been applied in both Saaty’s AHP [34]
and Fishburn SSB Utility Theory [13]. In the first case, as
shown in [20], additive transitivity for fuzzy preference rela-
tions can be seen as the parallel concept of Saaty’s consistency
property for multiplicative preference relations. In the second
case, as shown in [12] if we represent the degree of preference
of xi over xj by means of a Skew-Symmetric Bilinear function
φ(xi, xj) ∈ R the consistency condition can be stated as

φ(xi, xj) + φ(xj , xk) = φ(xi, xk)

which corresponds to expression (1), taking into account that
Fishburn represents indifference with the value of 0. We
acknowledge that additive transitivity is a condition difficult
to be satisfied by experts’ preferences. However, as shown
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in [20], [30] additive transitivity can be used to obtain more
consistent fuzzy preference relation from a given one, and as
shown in [1], [19] it is also a valuable concept for incomplete
fuzzy preference relations as it reduces experts’ uncertainty
when choosing values to estimate their unknown ones, which
is not the case if other types of weaker transitivity conditions
were to be used.

Additive transitivity implies additive reciprocity. Indeed,
because pii = 0.5 ∀i, if we make k = i in equation (1) then
we have: pij +pji = 1 ∀i, j ∈ {1, . . . , n}. Then, equation (1)
can be rewritten as:

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (2)

We will consider a fuzzy preference relation to be “additive
consistent” when for every three options in the problem
xi, xj , xk ∈ X their associated preference degrees pij , pjk, pik
fulfil (2).

Expression (2) can be used to calculate an estimated value of
a preference degree using other preference degrees in a fuzzy
preference relation. Indeed, the preference value pik (i 6= k)
can be estimated using an intermediate alternative xj in three
different ways:

1) From pik = pij + pjk − 0.5 we obtain the estimate

(cpik)j1 = pij + pjk − 0.5 (3)

2) From pjk = pji + pik − 0.5 we obtain the estimate

(cpik)j2 = pjk − pji + 0.5 (4)

3) From pij = pik + pkj − 0.5 we obtain the estimate

(cpik)j3 = pij − pkj + 0.5 (5)

The overall estimated value cpik of pik is obtained as the
average of all possible (cpik)j1, (cpik)j2 and (cpik)j3 values:

cpik =

∑n
j=1;i 6=k 6=j(cpik)j1 + (cpik)j2 + (cpik)j3

3(n− 2)
(6)

When the information provided is completely consistent
then (cpik)jl = pik ∀j, l. However, because experts are not
always fully consistent, the information given by an expert
may not verify (2) and some of the estimated preference degree
values (cpik)jl may not belong to the unit interval [0, 1]. We
note, from expressions (3–5), that the maximum value of any
of the preference degrees (cpik)jl (l ∈ {1, 2, 3}) is 1.5 while
the minimum one is -0.5. Taking this into account, we define
the error between a preference value and its estimated one as
follows:

Definition 4: The error between a preference value and its
estimated one in [0, 1] is computed as:

εpik =
2

3
· |cpik − pik| (7)

Thus, it can be used to define the consistency level between
the preference degree pik and the rest of the preference values
of the fuzzy preference relation.

Definition 5: The consistency level associated to a prefe-
rence value pik is defined as

clik = 1− εpik (8)

When clik = 1 then εpik = 0 and there is no inconsistency at
all. The lower the value of clik, the higher the value of εpik
and the more inconsistent is pik with respect to the rest of
information.

Easily, we can define the consistency measures for particular
alternatives and for the whole fuzzy preference relation:

Definition 6: The consistency measure associated to a par-
ticular alternative xi of a fuzzy preference relation P is defined
as

cli =

n∑
k=1
i 6=k

(clik + clki)

2(n− 1)
(9)

with cli ∈ [0, 1].

When cli = 1 all the preference values involving the alterna-
tive xi are fully consistent, otherwise, the lower cli the more
inconsistent these preference values are.

Definition 7: The consistency level of a fuzzy preference
relation P is defined as follows:

cl =

n∑
i=1

cli

n
(10)

with cl ∈ [0, 1].

When cl = 1 the preference relation P is fully consistent,
otherwise, the lower cl the more inconsistent P .

Example 1: Suppose the following complete fuzzy prefe-
rence relation

P =


− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −


The computation of the consistency level of the preference
value p43 is as follows:

(cp43)11 = p41 + p13 − 0.5 = 0.6 + 0.6− 0.5 = 0.7
(cp43)21 = p42 + p23 − 0.5 = 0.3 + 0.9− 0.5 = 0.7
(cp43)12 = p13 − p14 + 0.5 = 0.6− 0.4 + 0.5 = 0.7
(cp43)22 = p23 − p24 + 0.5 = 0.9− 0.7 + 0.5 = 0.7
(cp43)13 = p41 − p31 + 0.5 = 0.6− 0.4 + 0.5 = 0.7
(cp43)23 = p42 − p32 + 0.5 = 0.3− 0.1 + 0.5 = 0.7

cp43 = 0.7⇒ εp43 = 2
3 · |cp43 − p43| = 0⇒

cl43 = 1− εp43 = 1

The same consistency value 1 is obtained for all the preference
values of this fuzzy preference relation, which means that it
is a completely additive consistent fuzzy preference relation.

When working with an incomplete fuzzy preference rela-
tion, expression (6) cannot be used to obtain the estimate of
a known preference value.

If expert eh provides an incomplete fuzzy preference rela-
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tion Ph, the following sets can be defined [19]:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i 6= j}
MV h =

{
(i, j) ∈ A | phij is unknown

}
EV h = A \MVh
Hh1
ik =

{
j 6= i, k | (i, j), (j, k) ∈ EV h

}
Hh2
ik =

{
j 6= i, k | (j, i), (j, k) ∈ EV h

}
Hh3
ik =

{
j 6= i, k | (i, j), (k, j) ∈ EV h

}
EV hi = {(a, b) | (a, b) ∈ EV h ∧ (a = i ∨ b = i)}

MV h is the set of pairs of alternatives whose preference
degrees are not given by expert eh, EV h is the set of pairs of
alternatives whose preference degrees are given by the expert
eh; Hh1

ik , H
h2
ik , H

h3
ik are the sets of intermediate alternative

xj (j 6= i, k) that can be used to estimate the preference
value phik (i 6= k) using equations (3), (4), (5) respectively;
and EV hi is the set of pairs of alternatives whose preference
degrees involving the alternative xi are given by the expert
eh. Then, the estimated value of a particular preference degree
phik

(
(i, k) ∈ EV h

)
can be calculated as follows [19]:

if (#Hh1
ik + #Hh2

ik + #Hh3
ik ) 6= 0 ⇒ cphik =∑

j∈Hh1
ik

(cphik)j1 +
∑
j∈Hh2

ik
(cphik)j2 +

∑
j∈Hh3

ik
(cphik)j3

(#Hh1
ik + #Hh2

ik + #Hh3
ik )

(11)
In decision-making situations with incomplete information,

the notion of completeness is also an important factor to
take into account when analyzing the consistency. Clearly,
the higher the number of preference values provided by an
expert the higher the chance of inconsistency [19]. So, we can
define the consistency level associated to a preference value
in a incomplete fuzzy preference relation as follows:

Definition 8 ([19]): The consistency level clhik associated to
a preference value phik, (i, k) ∈ EV h, is defined as

clhik = (1− αhik) · (1− εphik) + αhik ·
Chi + Chk

2
; αhik ∈ [0, 1]

(12)
where Chi is the completeness level of the alternative xi
according to the preferences provided by the expert eh which
is defined as the ratio between the actual number of preference
values known for xi, #EV hi , and the total number of possible
preference values in which xi is involved with a different

alternative, 2(n−1), i.e., Chi =
#EV hi

2(n− 1)
; and αhik a parameter

to control the influence of completeness in the evaluation of
the consistency levels for eh defined as

αhik = 1− #EV hi + #EV hk −#(EV hi ∩ EV hk )

4(n− 1)− 2
(13)

Remark 1: Note that αhik decreases with respect to the
number of known preference values. In such a way, αhik = 0 if
all possible preference values between xi and xk are known,
in which case the completeness concept lacks any meaning,
and αhik = 1 if no values are known.

Clearly, expression (12) is an extension of expression (8),
because when P is complete both EV and A coincide and
αik = 0 ∀i, k.

C. Estimation Procedure of Missing Values for Incomplete
Fuzzy Preference Relations

As we have already mentioned, missing information is a
problem that has to be addressed because experts are not
always able to provide preference degrees between every pair
of possible alternatives. Therefore, it is necessary to estimate
the missing values before the application of a consensus model
or a selection model. To do that, we use the estimation
procedure of missing values for incomplete fuzzy preference
relations developed in [19]. This procedure estimates missing
information in an expert’s incomplete fuzzy preference relation
using only the preference values provided by that particular
expert. It is an iterative procedure that is designed using the
expression (11). The procedure estimates missing values by
means of two different tasks:

1) Establish the elements that can be estimated in each step
of the procedure
Given an incomplete fuzzy preference relation Ph, the
subset of missing values MV h that can be estimated in
step t is denoted by EMV ht and defined as follows:

EMV ht = { (i, k) ∈MV h \
t−1⋃
l=0

EMV hl |

i 6= k ∧ ∃j ∈ {Hh1
ik ∪Hh2

ik ∪Hh3
ik } }

(14)

and EMV h0 = ∅ (by definition). When EMV hmaxIter =
∅ with maxIter > 0 the procedure will stop as there
will not be any more missing values to be estimated.

Moreover, if
maxIter⋃
l=0

EMV hl = MV h then all missing

values are estimated, and consequently, the procedure is
said to be successful in the completion of the incomplete
fuzzy preference relation.

2) Estimate a particular missing value
In order to estimate a particular value phik with (i, k) ∈
EMV ht , the following function estimate p(h, i, k) is
used

function estimate p(h,i,k)
a) (cphik)1 = 0, (cphik)2 = 0, (cphik)3 = 0

b) if #Hh1
ik 6= 0 then (cphik)1 =

∑
j∈Hh1

ik

(cphik)j1

c) if #Hh2
ik 6= 0 then (cphik)2 =

∑
j∈Hh2

ik

(cphik)j2

d) if #Hh3
ik 6= 0 then (cphik)3 =

∑
j∈Hh3

ik

(cphik)j3

e) Calculate cphik =
(cphik)1 + (cphik)2 + (cphik)3

(#Hh1
ik + #Hh2

ik + #Hh3
ik )

end function

Then, the complete iterative estimation procedure is the fol-
lowing
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ITERATIVE ESTIMATION PROCEDURE
0. EMV h0 = ∅
1. t = 1
2. while EMV ht 6= ∅ {
3. for every (i, k) ∈ EMV ht {
4. estimate p(h,i,k)
5. }
6. t+ +
7. }

Example 2: Suppose the following incomplete fuzzy prefe-
rence relation

P 1 =


− 0.2 0.6 0.4
x − x x
x x − x
x x x −


The application of the estimation procedure is provided:

Step 1: The set of elements that can be estimated are:

EMV 1
1 = {(2, 3), (2, 4), (3, 2), (3, 4), (4, 2), (4, 3)}

After these elements have been estimated, we have:

P 1 =


− 0.2 0.6 0.4
x − 0.9 0.7
x 0.1 − 0.3
x 0.3 0.7 −


As an example, to estimate p143 the procedure is as follows:

H11
43 = ∅ ⇒ (cp143)1 = 0

H12
43 = {1} ⇒ (cp143)12 = p113 − p114 + 0.5 =

0.6− 0.4 + 0.5 = 0.7⇒ (cp143)2 = 0.7
H23

43 = ∅ ⇒ (cp143)3 = 0

cp143 =
0 + 0.7 + 0

1
= 0.7

Step 2: The set of elements that can be estimated are:
EMV 1

2 = {(2, 1), (3, 1), (4, 1)}
After these elements have been estimated, we have the

following completed fuzzy preference relation:

P 1 =


− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −


As an example, to estimate p41 the procedure is as follows:

H21
41 = ∅ ⇒ (cp141)1 = 0

H22
41 = ∅ ⇒ (cp141)2 = 0

H23
41 = {2, 3} ⇒

{
(cp141)23 = p142 − p112 + 0.5 = 0.6
(cp141)33 = p143 − p113 + 0.5 = 0.6

}
⇒ (cp141)3 = 1.2

cp141 =
0 + 0 + 1.2

2
= 0.6

Remark 2: We should point out that although the estimation
procedure of missing values is based on the additive consis-
tency property, this does not mean that a fuzzy preference
relation emerging from its application is necessarily additive
consistent.

III. A CONSENSUS MODEL FOR GDM WITH INCOMPLETE
PREFERENCE RELATIONS

A consensus process can be viewed as an iterative process
with several consensus rounds, in which the experts accept
to change their preferences following the advice given by
a moderator. The moderator knows the agreement at each
moment of the consensus process by means of the computation
of some consensus measures. As aforementioned, consensus
measures are used to guide and control most of the consensus
models developed up to now [3]–[5], [7], [10], [11], [16], [18],
[23]–[25], [29], [35], [37], [46].

To solve GDM problems with incomplete fuzzy preference
relations, firstly it is necessary to deal with the missing values
[27], [28], [40]. The previous consistency based procedure of
missing values allows us to measure the consistency levels
of each expert. This consistency information is used in this
section to propose a consensus model based not only on
consensus criteria but also on consistency criteria. We consider
that both criteria are important to guide the consensus process
in an incomplete decision framework. In such a way, we get
that experts change their opinions toward agreement positions
in a consistent way, which is desirable to achieve consistent
and consensus solutions. In [12] an additive consistency based
consensus model was proposed, although in the context of
complete fuzzy preference relations.

The proposed consensus model is designed with the aim
of obtaining the maximum possible consensus level while
trying to achieve a high level of consistency in experts’
preferences. Thus, we try to maintain a balance between
both. Moreover, we not only achieve a solution with certain
consensus and consistency degrees simultaneously, but also we
get to deal with incomplete fuzzy preference relations, giving
personalised advice to the experts on how to complete them.

In GDM situations, the search for consistency often could
lead to a reduction of the level of consensus, and viceversa.
Therefore, whether to proceed from consistency to consensus
or viceversa is a matter that has to be addressed. We have
decided to proceed from consistency to consensus because in
GDM situations consensus between experts is usually searched
using the basic rationality principles that each expert presents.
To simulate this, the consistency criteria is first applied in our
model to fix the rationality of each expert and afterwards it
searches to meet experts’ preferences to reach consensus. If we
were to secure consensus and only thereafter consistency, we
could destroy the consensus in favour of the individual con-
sistency and the main aim of our process, which is consensus,
would be distorted.

Figure 2 depicts this consensus model. We assume that
experts provide their opinions on a set of alternatives by
means of incomplete fuzzy preference relations. These are
completed by using the above estimation procedure. Later,
consistency and consensus measures are computed from the
completed fuzzy preference relations. These measures are used
in a consistency/consensus control step to determine if an
appropriate consistency/consensus level has been reached. If
so, the consensus reaching process finishes and a selection
process is applied to obtain the solution. Otherwise, the
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Fig. 2. Consensus Model Based on Consistency and Consensus Criteria

consensus reaching process activates a feedback mechanism,
where the preference values which are not contributing to
obtain a high consensus/consistency level are detected and
some easy rules about how to alter them are generated to help
the experts to change and complete their opinions.

The steps of this consensus model are the following:

1) Computing Missing Information
2) Computing Consistency Measures
3) Computing Consensus Measures
4) Controlling the Consistency/Consensus State
5) Feedback Mechanism

They are presented in detail in the following subsections, along
with a step-by-step example which illustrates the computations
that are being carried out. For the sake of simplicity, we will
assume a low number of experts and alternatives.

Example 3: Let us suppose that four different experts
{e1, e2, e3, e4} provide the following incomplete fuzzy pre-
ference relations over a set of four alternatives X =
{x1, x2, x3, x4}:

P 1 =


− 0.2 0.6 0.4
x − x x
x x − x
x x x −



P 2 =


− x 0.7 x
0.4 − x 0.7
0.3 x − x
x 0.4 x −



P 3 =


− 0.3 x 0.75
0.6 − x x
x x − x

0.3 0.4 x −



P 4 =


− x 0.6 0.3
0.4 − 0.4 0.2
0.5 0.6 − 0.3
0.7 0.7 0.7 −


A. Computing Missing Information

In this first step each incomplete fuzzy preference relation
is completed by means of the estimation procedure described
in subsection II-C. Therefore, for each incomplete fuzzy
preference relation Ph we obtain its corresponding complete
fuzzy preference relation P

h
.

Example 4 (Example 3 continuation): The complete fuzzy
preference relations associated to P 1, P 2, P 3 and P 4 are:

P
1

=


− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −



P
2

=


− 0.62 0.7 0.8
0.4 − 0.6 0.7
0.3 0.4 − 0.57
0.25 0.4 0.45 −



P
3

=


− 0.3 0.54 0.75
0.6 − 0.69 0.87
0.46 0.31 − 0.73
0.3 0.4 0.27 −



P
4

=


− 0.6 0.6 0.3
0.4 − 0.4 0.2
0.5 0.6 − 0.3
0.7 0.7 0.7 −


B. Computing Consistency Measures

To compute consistency measures, firstly, for each P
h

we
compute its corresponding fuzzy preference relation CPh =(
cphik

)
according to expression (6). Secondly, we apply expres-

sions (8)–(10) to (P
h
, CPh)(∀h) to compute the consistency

measures CLh =
(
clhik
)
, clhi , cl

h ∀i, k ∈ {1, ..., n}. Finally,
we define a global consistency measure among all experts to
control the global consistency situation.

Definition 9: The global consistency measure is computed
as follows:

CL =

∑m
h=1 cl

h

m
(15)

Example 5 (Example 3 continuation): Global consistency
measure

I) The corresponding fuzzy preference relations {CPh} for
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P 1, P 2, P 3 and P 4 are:

CP 1 =


− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −



CP 2 =


− 0.63 0.72 0.77
0.4 − 0.6 0.67
0.3 0.42 − 0.58
0.25 0.35 0.45 −



CP 3 =


− 0.45 0.51 0.7
0.6 − 0.62 0.89
0.48 0.41 − 0.64
0.33 0.1 0.42 −



CP 4 =


− 0.6 0.5 0.35
0.4 − 0.45 0.2
0.5 0.55 − 0.3
0.65 0.8 0.7 −


II) The consistency measures for every pair of alternatives

in the experts’ preferences are:

CL1 =


− 1.0 1.0 1.0
1.0 − 1.0 1.0
1.0 1.0 − 1.0
1.0 1.0 1.0 −



CL2 =


− 0.99 0.98 0.97
1.0 − 1.0 0.97
1.0 0.98 − 0.99
1.0 0.95 1.0 −



CL3 =


− 0.85 0.97 0.95
1.0 − 0.93 0.98
0.96 0.9 − 0.91
0.97 0.7 0.86 −



CL4 =


− 1.0 0.9 0.95
1.0 − 0.95 1.0
1.0 0.95 − 1.0
0.95 0.9 1.0 −


III) The consistency measure that each expert presents in

his/her preferences are:

cl1 = 1.0 ; cl2 = 0.99 ; cl3 = 0.91 ; cl4 = 0.97

IV) The global consistency level is:

CL =
1.0 + 0.99 + 0.91 + 0.97

4
= 0.97

C. Computing Consensus Measures

We compute several consensus measures for different fuzzy
preference relations. In fact, as in [16], [21] we compute two
different kinds of measures: consensus degrees and proximity
measures. Consensus degrees are used to measure the ac-
tual level of consensus in the process, whilst the proximity
measures give information about how close to the collective
solution every expert is. These measures are given on three

different levels for a fuzzy preference relation: pairs of al-
ternatives, alternatives and relations. This measure structure
will allows us to find out the consensus state of the process
at different levels. For example, we will be able to identify
which experts are close to the consensus solution, or in which
alternatives the experts are having more trouble to reach
consensus.

1) Consensus Degrees: Firstly, for each pair of experts
(eh, el) (h < l) we define a similarity matrix SMhl =

(
smhl

ik

)
where

smhl
ik = 1− |phik − plik| (16)

Then, a collective similarity matrix, SM = (smik) is obtained
by aggregating all the (m− 1)× (m− 2) similarity matrices
using the arithmetic mean as the aggregation function φ:

smik = φ(smhl
ik) ; ∀h, l = 1, ...,m | h < l. (17)

Once the similarity matrices are computed we proceed to
calculate the consensus degrees in the three different levels:

Level 1. Consensus degree on pairs of alternatives. The con-
sensus degree on a pair of alternatives (xi, xk), de-
noted copik, is defined to measure the consensus degree
amongst all the experts on that pair of alternatives:

copik = smik (18)

Level 2. Consensus degree on alternatives. The consensus
degree on alternative xi, denoted cai, is defined to
measure the consensus degree amongst all the experts
on that alternative:

cai =

∑n
k=1;k 6=i(copik + copki)

2(n− 1)
(19)

Level 3. Consensus degree on the relation. The consensus
degree on the relation, denoted CR, is defined to measure
the global consensus degree amongst all the experts’
opinions:

CR =

∑n
i=1 cai
n

(20)

Example 6 (Example 3 continuation): Computation of
consensus degrees

Following with our example, we need to compute the 6
possible similarity matrices between every pair of different
experts (not included for simplicity), and the collective one,
which is:

SM =


− 0.74 0.92 0.69

0.77 − 0.74 0.67
0.89 0.74 − 0.74
0.73 0.8 0.74 −


From SM we obtain the following consensus degree on the
relation

CR = 0.76.

2) Proximity Measures: To compute proximity measures
for each expert we need to obtain the collective fuzzy pre-
ference relation, P c, which summarizes preferences given by
all the experts. To obtain P c we use an IOWA operator [42]–
[44], which uses both consensus and consistency criteria as
inducing variable. In such a way, we obtain each collective
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fuzzy preference degree according to the most consistent and
consensual individual fuzzy preference degrees.

Definition 10 ([43]): An IOWA operator of dimension n is
a function ΦW : (R×R)n → R, to which a weighting vector
is associated, W = (w1, . . . , wn), with wi ∈ [0, 1], Σiwi = 1,
and it is defined to aggregate the set of second arguments of
a list of n 2-tuples {〈u1, p1〉 , . . . , 〈un, pn〉} according to the
following expression,

ΦW (〈u1, p1〉 , . . . , 〈un, pn〉) =

n∑
i=1

wi · pσ(i)

σ being a permutation of {1, . . . , n} such that uσ(i) ≥
uσ(i+1),∀i = 1, . . . , n − 1, i.e.,

〈
uσ(i), pσ(i)

〉
is the 2-tuple

with uσ(i) the i-th largest value in the set {u1, . . . , un}.
In the above definition, the reordering of the set of values
to be aggregated, {p1, . . . , pn}, is induced by the reordering
of the set of values {u1, . . . , un} associated to them, which
is based upon their magnitude. Due to this use of the set of
values {u1, . . . , un}, Yager and Filev called them the values
of an order inducing variable and {p1, . . . , pn} the values of
the argument variable [42]–[44].

Following Yager’s ideas on quantifier guided aggregation
[41], we could compute the weighting vector of an IOWA
operator using a linguistic quantifier Q [45] as

wh = Q

(∑h
j=1 uσ(j)

T

)
−Q

(∑h−1
j=1 uσ(j)

T

)
(21)

being T =
∑n
j=1 uj and σ the permutation used to produce

the ordering of the values to be aggregated.
Thus, to obtain each collective fuzzy preference degree pcik

according to the most consistent and consensual individual
fuzzy preference degrees we propose to use an IOWA operator
with the consistency/consensus values, {z1ik, z2ik, . . . , zmik}, as
the values of the order inducing variable, i.e.,

pcik = ΦW (
〈
z1ik, p

1
ik

〉
, · · · , 〈zmik , pmik〉) =

m∑
h=1

wh · pσ(h)ik (22)

where
• σ is a permutation of {1, . . . ,m} such that zσ(h)ik ≥
z
σ(h+1)
ik ,∀h = 1, . . . ,m − 1, i.e.,

〈
z
σ(h)
ik , pσ(i)

〉
is the

2-tuple with z
σ(h)
ik the h-th largest value in the set

{z1ik, . . . , zmik};
• the weighting vector is computed according to the fol-

lowing expression

wh = Q

(∑h
j=1 z

σ(j)
ik

T

)
−Q

(∑h−1
j=1 z

σ(j)
ik

T

)
(23)

with T =
∑m
j=1 z

j
ik;

• and the set of values of the inducing variable
{z1ik, . . . , zmik} are computed as

zhik = (1− δ) · clhik + δ · cohik, (24)

being cohik a consensus measure for the preference value
pik expressed by expert eh and δ ∈ [0, 1] a parameter
to control the weight of both consistency and consensus

criteria in the inducing variable. Usually δ > 0.5 will be
used to give more importance to the consensus criterion.
We should note that in our framework, each value cohik
used to calculate {z1ik, . . . , zmik} is defined as

cohik =

∑n
l=h+1 sm

hl
ik +

∑h−1
l=1 sm

lh
ik

n− 1
(25)

Example 7 (Example 3 continuation): Computation of the
collective fuzzy preference relation

I) To compute the proximity measures it is necessary
to obtain the consistency/consensus values of the inducing
variable of the IOWA operator. To do so, firstly we compute
the consensus values matrices coh = (cohik):

co1 =


− 0.69 0.95 0.72

0.67 − 0.66 0.78
0.92 0.66 − 0.77
0.75 0.8 0.77 −



co2 =


− 0.75 0.88 0.68
0.8 − 0.8 0.78
0.85 0.8 − 0.77
0.72 0.87 0.77 −



co3 =


− 0.76 0.91 0.72
0.8 − 0.8 0.66
0.92 0.8 − 0.66
0.75 0.87 0.65 −



co4 =


− 0.76 0.95 0.65
0.8 − 0.67 0.44
0.88 0.67 − 0.77
0.68 0.67 0.77 −



II) With values cohik and clhik (Example 5), the inducing
variable values for each expert, zh = (zhik) (we assume that
δ = 0.75), are obtained:

z1 =


− 0.77 0.96 0.79

0.75 − 0.75 0.83
0.94 0.75 − 0.83
0.81 0.85 0.83 −



z2 =


− 0.81 0.91 0.76

0.85 − 0.85 0.83
0.89 0.85 − 0.82
0.79 0.89 0.83 −



z3 =


− 0.78 0.92 0.77

0.85 − 0.83 0.74
0.93 0.83 − 0.72
0.81 0.82 0.7 −



z4 =


− 0.82 0.94 0.73

0.85 − 0.74 0.58
0.91 0.74 − 0.83
0.75 0.73 0.83 −


III) Using the following fuzzy linguistic quantifier “most
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of” Q:

Q(r) =


0 if r < 0.3
r−0.3
0.8−0.3 if 0.3 ≤ r < 0.8

1 if r ≥ 0.8

to compute the weighting vector of the IOWA operator, the
collective fuzzy preference relation P c is:

P c =


− 0.43 0.58 0.74

0.42 − 0.77 0.78
0.46 0.23 − 0.46
0.31 0.37 0.57 −


Once we have computed P c, we can compute the proximity

measures in each level of a fuzzy preference relation:
Level 1. Proximity measure on pairs of alternatives. The

proximity measure of an expert eh on the pair of alterna-
tives (xi, xk) to the group one, denoted pphik, is calculated
as

pphik = 1− |phik − pcik| (26)

Level 2. Proximity measure on alternatives. The proximity
measure of an expert eh on alternative xi to the group
one, denoted pahi , is calculated as:

pahi =

∑n
k=1;k 6=i(pp

h
ik + pphki)

2(n− 1)
(27)

Level 3. Proximity measure on the relation. The proximity
measure of an expert eh on his/her preference relation to
the group one, denoted prh, is calculated as:

prh =

∑n
i=1 pa

h
i

n
(28)

Example 8 (Example 3 continuation): Computation of
proximity measures

I) The proximity measures on pairs of alternatives for each
expert are:

pp1 =


− 0.77 0.98 0.66

0.62 − 0.87 0.92
0.94 0.87 − 0.84
0.71 0.93 0.87 −



pp2 =


− 0.81 0.88 0.94

0.98 − 0.83 0.92
0.84 0.83 − 0.89
0.94 0.97 0.88 −



pp3 =


− 0.87 0.96 0.99

0.82 − 0.92 0.91
0.98 0.92 − 0.73
0.99 0.97 0.7 −



pp4 =


− 0.83 0.98 0.56

0.98 − 0.63 0.42
0.96 0.63 − 0.84
0.61 0.67 0.87 −


II) The proximity measures on alternatives for each expert

are:
pa1 =

(
0.78 0.83 0.9 0.82

)
pa2 =

(
0.9 0.89 0.86 0.92

)

Fig. 3. Consensus/Consistency State Control Routine

pa3 =
(

0.94 0.9 0.87 0.88
)

pa4 =
(

0.82 0.69 0.82 0.66
)

III) The proximity measures on the relation for each expert
are:

pr1 = 0.83 ; pr2 = 0.89 ; pr3 = 0.90 ; pr4 = 0.75.

D. Controlling Consistency/Consensus State

The consistency/consensus state control process will be used
to decide when the feedback mechanism should be applied to
give advice to the experts or when the consensus reaching
process has to come to an end. It should take into account
both the consensus and consistency measures. To do that,
we define a new measure or level of satisfaction, called
consistency/consensus level (CCL), which is used as a control
parameter:

CCL = (1− δ) · CL+ δ · CR (29)

with δ the same value used in (24). When CCL satisfies
a minimum satisfaction threshold value γ ∈ [0, 1], then the
consensus reaching process finishes and the selection process
can be applied.

Additionally, the system should avoid stagnation, that is,
situations in which consensus and consistency measures never
reach an appropriate satisfaction value. To do so, a maximum
number of iterations maxIter should be fixed and compared
to the actual number of iterations of the consensus process
numIter.

The consensus/consistency control routine follows the
schema shown in Figure 3: first the consistency/consensus
level is checked against the minimum satisfaction threshold
value. If CCL > γ the consensus reaching process ends.
Otherwise, it will check if the maximum number of iterations
has been reached. If so, the consensus reaching process ends,
if not it activates the feedback mechanism.

Example 9 (Example 3 continuation): We fix a minimum
threshold value γ = 0.85. Because the consistency/consensus
level at this moment is CCL = (1 − 0.75) · 0.97 + 0.75 ·
0.76 = 0.81, then the consensus process applies the feedback
mechanism.
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E. Feedback Mechanism

The feedback mechanism generates personalised advice to
the experts according to the consistency and consensus criteria.
It helps experts to change their preferences and to complete
their missing values. This activity is carried out in two steps:
Identification of the preference values that should be changed
and Generation of advice.

1) Identification of the Preference Values: We must identify
preference values provided by the experts that are contributing
less to reach a high consensus/consistency state. To do that, we
define the set APS that contains 3-tuples (h, i, k) symbolising
preference degrees phik that should be changed because they
affect badly to that consistency/consensus state. To compute
APS, we apply a three step identification process that uses
the proximity and consistency measures previously defined.
Step 1. We identify the set of experts EXPCH that should

receive advice on how to change some of their preference
values. The experts that should change their opinions are
those whose preference relation level of satisfaction is
lower than the satisfaction threshold γ, i.e.,

EXPCH = {h | (1− δ) · clh + δ · prh < γ} (30)

Step 2. We identify the alternatives that the above experts
should consider to change. This set of alternatives is
denoted as ALT . To do this, we select the alternatives
with a level of satisfaction lower than the satisfaction
threshold γ, i.e.,

ALT = {(h, i) | eh ∈ EXPCH ∧
(1− δ) · clhi + δ · pahi < γ} (31)

Step 3. Finally, we identify preference values for every alter-
native and expert (xi ; eh | (h, i) ∈ ALT ) that should
be changed according to their proximity and consistency
measures on the pairs of alternatives, i.e.,

APS = {(h, i, k) | (h, i) ∈ ALT ∧
(1− δ) · clhik + δ · pphik < γ} (32)

Additionally the feedback process must provide rules for
missing preference values. To do so, it has to take into account
in APS all missing values that were not provided by the
experts, i.e.,

APS′ = APS ∪ {(h, i, k) | phik ∈MVh} (33)

Example 10 (Example 3 continuation): Following with our
example, the set of 3-tuples APS that experts should change
is:

APS = {(4, 2, 3), (4, 2, 4), (4, 4, 1), (4, 4, 2)}

Taking into account all missing values not provided by the
experts, the APS′ set is:

APS′ = {(1, 2, 1), (1, 2, 3), (1, 2, 4), (1, 3, 1), (1, 3, 2),
(1, 3, 4), (1, 4, 1), (1, 4, 2), (1, 4, 3), (2, 1, 2),
(2, 1, 4), (2, 2, 3), (2, 3, 2), (2, 3, 4), (2, 4, 1),
(2, 4, 3), (3, 1, 3), (3, 2, 3), (3, 2, 4), (3, 3, 1),
(3, 3, 2), (3, 3, 4), (3, 4, 3), (4, 1, 2), (4, 2, 3),
(4, 2, 4), (4, 4, 1), (4, 4, 2)}

Note that there are so many 3-tuples in APS′ because there

were many missing values in the incomplete fuzzy preference
relations provided by the experts.

2) Generation of Advice: In this step, the feedback mecha-
nism generates personalised recommendations to help the ex-
perts to change their fuzzy preference relations. These recom-
mendations are based on easy recommendation rules that will
not only tell the experts which preference values they should
change, but will also provide them with particular values for
each preference to reach a higher consistency/consensus state.

The new preference degree of alternatives xi over alternative
xk to recommend to the expert eh, rphik, is calculated as the
following weighted average of the preference value cphik and
the collective preference value pcik:

rphik = (1− δ) · cphik + δ · pcik, (34)

As previously mentioned, with δ > 0.5 the consensus model
leads the experts towards a consensus solution rather than
towards an increase on their own consistency levels.

Finally, we should distinguish two cases: the recommenda-
tion is given because a preference value is far from the con-
sensus/consistency state; the recommendation is given because
the expert did not provide the preference value. Therefore,
∀(h, i, k) ∈ APS:

1) If phik ∈ EVh the recommendation generated for the
expert eh is: “You should change your preference value
(i, k) to a value close to rphik.”

2) If phik ∈ MVh the recommendation generated for the
expert eh is: “You should provide a value for (i, k) close
to rphik.”

For each 3-tuple using the recommendation rules we gene-
rate a recommendation:

Example 11 (Example 3 continuation): The recommenda-
tions for our example are:
To expert e1 ⇒ You should provide a value for (2, 1) close
to 0.52
To expert e1 ⇒ You should provide a value for (2, 3) close
to 0.8
To expert e1 ⇒ You should provide a value for (2, 4) close
to 0.76
To expert e1 ⇒ You should provide a value for (3, 1) close
to 0.44
To expert e1 ⇒ You should provide a value for (3, 2) close
to 0.2
To expert e1 ⇒ You should provide a value for (3, 4) close
to 0.42
To expert e1 ⇒ You should provide a value for (4, 1) close
to 0.38
To expert e1 ⇒ You should provide a value for (4, 2) close
to 0.35
To expert e1 ⇒ You should provide a value for (4, 3) close
to 0.6
To expert e2 ⇒ You should provide a value for (1, 2) close
to 0.48
To expert e2 ⇒ You should provide a value for (1, 4) close
to 0.75
To expert e2 ⇒ You should provide a value for (2, 3) close
to 0.73
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To expert e2 ⇒ You should provide a value for (3, 2) close
to 0.28
To expert e2 ⇒ You should provide a value for (3, 4) close
to 0.49
To expert e2 ⇒ You should provide a value for (4, 1) close
to 0.29
To expert e2 ⇒ You should provide a value for (4, 3) close
to 0.54
To expert e3 ⇒ You should provide a value for (1, 3) close
to 0.56
To expert e3 ⇒ You should provide a value for (2, 3) close
to 0.73
To expert e3 ⇒ You should provide a value for (2, 4) close
to 0.81
To expert e3 ⇒ You should provide a value for (3, 1) close
to 0.46
To expert e3 ⇒ You should provide a value for (3, 2) close
to 0.28
To expert e3 ⇒ You should provide a value for (3, 4) close
to 0.5
To expert e3 ⇒ You should provide a value for (4, 3) close
to 0.53
To expert e4 ⇒ You should provide a value for (1, 2) close
to 0.47
To expert e4 ⇒ You should change your preference value for
(2, 3) to a value close to 0.69
To expert e4 ⇒ You should change your preference value for
(2, 4) to a value close to 0.64
To expert e4 ⇒ You should change your preference value for
(4, 1) to a value close to 0.39
To expert e4 ⇒ You should change your preference value for
(4, 2) to a value close to 0.48

Once experts receive the recommendations, another round
of the consensus process takes place, with the experts giving
new fuzzy preference relations closer to a consensus solution
and with higher levels of consistency.

Example 12 (Finishing Ex. 3: Second Consensus Round):
We assume that all the experts follow the recommendations
they were given, which implies that the new fuzzy preference
relations for the second round of the consensus process are:

P 1 =


− 0.2 0.6 0.4

0.52 − 0.8 0.76
0.44 0.2 − 0.4
0.38 0.35 0.6 −



P 2 =


− 0.48 0.7 0.75
0.4 − 0.73 0.7
0.3 0.28 − 0.49
0.29 0.4 0.54 −



P 3 =


− 0.3 0.56 0.75
0.6 − 0.73 0.81
0.46 0.28 − 0.5
0.3 0.4 0.53 −



P 4 =


− 0.47 0.6 0.3
0.4 − 0.69 0.64
0.5 0.6 − 0.3
0.39 0.48 0.7 −


Applying the same process (which will not be detailed here)
we obtain the following global consistency and consensus
levels:

CL = 0.91 and CR = 0.88.

Obviously, the consistency level has decreased a little bit
because the process gave more importance to the consensus
criteria than the consistency one. However, the consensus
level has increased. Finally, as the consistency/consensus level
satisfies the minimum consensus threshold value, i.e.,

CCL = 0.89 > γ = 0.85,

then the consensus reaching process ends and a solution of
consensus is obtained at this point by applying a selection
process.

F. Analysis of the Consensus Model

In this subsection we provide a discussion on some relevant
aspects of our proposed consensus model with regards to other
different consensus models.

1) Firstly, we should point out that our model presents two
main advantages with respect to others consensus models
proposed in the literature [3]–[5], [7], [10], [11], [16],
[18], [23]–[25], [29], [35], [37], [46]: (i) Our consensus
models deals with decision situations with incomplete
information, and (ii) it helps experts to reach consen-
sus with consistency and consensus criteria simultane-
ously, and therefore, it guides experts in their preference
changes allowing them to maintain their basic rationality
principles. Also, due to the role of the parameter δ used in
expression (29) for the consistency and consensus levels
to guide the consensus reaching process, our consensus
model can be seen as a more general model than previous
proposed models. Take for example the extreme cases of
δ = 1 and δ = 0. In the first one our model is guided
using just consensus criteria, while in the latter it would
be just the consistency one.

2) The consistency based consensus model proposed in [12],
although it presents similarities with our consensus model
in that a consistency index of preferences is proposed
in order to ‘endogenously assign different weights to
decision makers,’ it differs with respect to our consensus
model in that: (i) it is defined in decision situations with
complete fuzzy preference relations, (ii) it applies a con-
sensus measure defined over pairwise preference degrees,
i.e., it does not incorporate the different consensus levels
of a relation and it does not use proximity measures, and
more significantly (iii) it provides recommendations in-
discriminately to all experts given that it acts dynamically
over all experts’ preferences.

3) The steps of our consensus model with incomplete infor-
mation are designed emulating the human behaviour in
real group decision making processes. In such processes,



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 5, OCTOBER 2007 11

although initially an expert may not be able to provide
some preference degrees, however as discussion process
progresses this expert may be in a situation of, based on
on his own rationality principles and the fact of having
known other experts’ preferences, providing values for
those preferences he was not able before. In our model, to
simulate this behaviour we introduce the consistency cri-
terion. By doing this, experts with incomplete information
can complete their preferences by using estimate values
consistent with his opinions and, therefore, they partic-
ipate in a better and fully way in the decision process.
Also, as a result of this, situations in which one particular
expert or group of experts may control and dominate
the decision process are avoided. Indeed, using the ex-
ample provided in this paper to illustrate our consensus
model, if those values not given were simply ignored
in constructing the collective preference relation, expert
e1 would receive too many recommendations based only
on the preferences of the rest of the experts, which
would decrease her/his real participation in the decision
process. Furthermore, in this scenario of ignoring values
not given, the more complete a fuzzy preference relation
is provided by an expert, the more the decision process
would be dominated by that expert. Following with our
example, expert e4 would be the most dominant in the
decision process and,for example, his preference values
p423, p

4
32, p

4
34 and p443 would determine the corresponding

preference values for the rest of experts. However, our
model overcomes these problems: (i) expert e1 receives a
recommendation value of 0.8 for p123 and not 0.4 (the cor-
responding value provided by e4); (ii) this recommended
value is obtained by taking into account his rationality
principles and therefore closer to his consistent estimated
preference value of 0.9; (iii) finally, expert e4 receives a
recommendation value of 0.69 to change his preference
value p423 to make it closer to the values p123, p

2
23, p

3
23,

which shows that he does not possess a dominant position
in this preference value when the values not given are
consistently estimated.

4) Obviously, the feedback mechanism would make the
group to move towards the consensus only if their rec-
ommendations are taken into account and implemented
in each round of the consensus process. An important
characteristic of our consensus model is that it does
not provide indiscriminate recommendations to experts,
which in the end guarantees its convergence. The two
processes within the feedback mechanism that guarantee
this convergence towards consensus are:
(i) Preference Identification Process by which only those
experts and their preference values to be considered in the
advice process are identified. This is represented by the
set APS. In such a way, we get that all experts do not have
to change all their preference values in each round of the
consensus process and furthermore a minimum consensus
level among experts’ opinion is established.
(ii) Advice Process by which the recommended values
are computed from both the corresponding consistent
and collective preference values (see expression (34))

in the same proportion (δ, 1 − δ)than the one already
fixed and used in expression (29) for the consistency and
consensus levels. As a consequence, the acceptance of the
recommendation by the experts would lead the decision
process towards the consensus because in each round
the cardinality of APS would diminish and the achieved
consensus level would be greater than in the previous
consensus round.
Obviously, the consensus reaching process will depend on
the size of the group of experts as well as on the size of
the set of alternatives, so that when these sizes are small
and when opinions are homogeneous, the consensus level
required is easier to obtain.

IV. CONCLUSIONS

In this paper we have presented a new consensus model for
GDM problems with incomplete fuzzy preference relations.
Contrary to many other previous consensus models, it uses two
different kinds of measures to guide the consensus reaching
process, consistency and consensus measures, and generates
advice to experts in a discriminate way. As a consequence,
the consensus model will contribute to achieve consistent and
consensus solutions. Furthermore, the consensus model can be
developed automatically without the participation of a human
moderator.

This consensus model applies a feedback mechanism to
give personalised advice to the experts on how to change and
complete their fuzzy preference relations. This feedback mech-
anism could be used like an estimation procedure of missing
values because it generates possible values to complete the
missing values in the incomplete fuzzy preference relations.
Therefore, it could act as an estimation procedure based on
consistency/consensus criteria.

In the future, we will refine and extend this consensus model
to linguistic decision frameworks.
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